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Comment on "Quantum Measurements anti
Stochastic Processes"

In a recent Letter, ' Gisin has presented two in-
teresting stochastic models to describe the dynami-
cal reduction of the state vector. I wish to point out
that, in these models, the state vector remains in a
superposition for all finite times, i.e., it never com-
pletely reduces. This is not a desirable feature.
More satisfactory stochastic models in this regard
have previously been given.

In the first model given by Gisin, the state vector
describes a two-outcome experiment. The squared
amplitudes multiplying the two states in the super-
position are p and 1 —p, where p satisfies the sto-
chastic differential equation

dp =2p(1 —p)dA (1)

[Eq. (9) in Ref. 1], where n is Brownian motion.
Using the mell-known method of Ito,4 the ensemble
of such solutions obeys the diffusion (Fokker-
Planck) equation
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[equivalent to Eq. (13) in Ref. 1] which I have dis-
cussed previously, 2 but rejected as a possible
description of state-vector reduction for the reason
given here.

The exact solution of Eq. (2) corresponding to
the initial condition p=8(p —po) at t=0 can be
found [Eq. (2.3) in Ref. 2 or Eq. (14) in Ref. 1]. It
consists of two peaks which travel toward p =0 and

p = 1. The areas under each peak are 1 —po and po,

respectively, as they should be for correct reduc-
tion. However, the peaks never reach p=0 or
p=l. p vanishes at p=0 and p=1 for all t~0:
The peaks merely jam up closer and closer to these
boundary points. In other words, each state vector
in the ensemble is always in a superposition, and
the reduction time for each state vector in the en-
semble is infinite.

This "open boundary" behavior4 occurs because
of the strong singularity of the elliptic operator on
the right-hand side of Eq. (2) at the boundary
[ —p2 and —(1—p)z]. The less singular "exit
boundary" behavior4 of the diffusion equation
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The simplest case of a two-outcome experiment will

suffice. (The more general case behaves similarly. )
If we change variables to p =p~, S=p&+ p2, we ob-
tain from (5)

satisfactorily describes the reduction process, with a
finite mean reduction time, as I have shown.

In the second model, in the simplest case of
orthogonal projectors, the squared amplitudes

pq, . . . , p„corresponding to an n-outcome experi-
ment obey Eq. (16) of Ref. 1,

dpk = 2pk [Xj.pj d~, d„]— (4)

where the o., are independent Brownian motions.
The diffusion equation in this case is readily found
to be

t)p
Pjpk [Xip/ Pj pk + 8jk]P (5)t)r Ik t)pIt)pk

t)p t) t)

I) r t)pz
=2 p [(1—p) +(S—p) ]p+2 (1—S) [S +2p(S+p)]p

t12—4 (I —S)p [(S—p)' —p(1 —p) 1p. (6)
t)pt)S

It is seen that p =5(1—S)p(p, t) is a solution of Eq.
(6), so probability is conserved. The equation for p PACS numbers: 03.65.Bz, 02.50.+s
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is identical in form to Eq. (2), so the reduction time
is infinite for this model, too.
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