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Phase Transition in a Dzyaloshinsky-Moriya Spin-Glass
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A mean-field model of a Heisenberg spin-glass with weak random anisotropy is solved. It
is shown that an Ising-like phase transition in a finite magnetic field H occurs at T, (H)—T, (0) —rIH in the limit of small H. The crossover to an Ising behavior occurs when
D/J & (pH/J)23, where D and J are the anisotropy and exchange coupling constants,
respectively.
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Spin-glass (SG) phase transitions occur, accord-
ing to mean-field theory, also in the presence of a
magnetic field H. In an Ising system, this transition
occurs at the de Almeida-Thouless' (AT) line,
which has the form

r —(3h /4)'

where r, = 1 —T, (H)/T, (0), and h= pH/kaT, —(0)
is assumed to be small. The paramagnetic state
T) T, (H) is a reversible phase whereas below
T, (H) irreversibility and remanence set in. In an
isotropic m-component SG, the transition occurs
along the Gabay-Toulouse3 (GT) line which is

h2(m2+ 4m+ 2)/4(m+ 2)2

for small h. Here, the line marks the freezing of
degrees of freedom transverse to the field direction
as well as the onset of irreversibility. Near the GT
line the irreversibility is predominantly in the local
transverse response. However, in an isotropic sys-
tem it does not affect the uniform transverse
response since there are no barriers to uniform spin
rotations. On the other hand, the longitudinal ir-
reversibility is weak near T, (H) and becomes
"strong" only below a "crossover" temperature
whose field dependence is similar to Eq. (1).
Indeed, it has been proposed4 5 that the AT-like
lines which have been observed in numerous exper-
iments in vector SG's are not critical lines but
strong-irreversibility crossover lines. Of course, it
is also possible that the observed lines are finite-
time effects which are not necessarily related to the
mean-field transitions, as was recently demonstrat-
ed in simulations of two-dimensional SG models. 7

So far, most of the discussions of the finite-field
transitions have treated the vector SG's as isotropic

systems. Spin-glasses, however, are known to have
small amounts of anisotropy. In particular, Ruder-
man-Kittel-Kasuya- Yosida (RKKY) SG's contain
weak randomly anisotropic Dzyaloshinsky-Moriya
(DM) interactions. s Random anisotropy is expect-
ed to play an important role in the SG transitions,
in particular, in the presence of a field. First, be-
cause of the random mixing of spin components, all
of them are frozen as soon as a field is turned on.
Thus, for sufficiently strong anisotropy a crossover
to an Ising behavior is expected. Second, the ran-
dom anisotropy couples the uniform transverse
response to the local transverse irreversibility, thus
making it possible, at least in principle, to measure
the strong transverse irreversibility near T, (H).

In this Letter we study the effects of random an-
isotropy on the SG transition using an infinite-
ranged Hamiltonian of an m-component SG with
weak DM interactions,

H= —
2 XJ~gStSJ —

2 X S/'DI"S" P,Hxg,'. —

(3)

The interaction constants JIJ and DJ are random
variables with zero means and variances
(J»2), = J2/N and (D,t'")2=D2//N, where N is the
total number of spins and (), denotes an average
over the disorder. The spin variables are normalized
as /St~2=m. The matrix Dt~ obeys Dtj'"= —Dt~r"

which is a generalization of the DM interactions in
the Heisenberg (m = 3) case. The SG order is
characterized by the Cartesian components of the
Edwards-Andersons (EA) order parameter 0~ and
the irreversible part of the local susceptibility2 A~.
If H=0, the transition from the paramagnetic
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phase (Q=b =0) to the SG phase occurs at Ts
—= T, (H=O) = [J'+D'(m —I)]'t'. If H and D
& 0, all components of Q are nonzero at all T, and

T, (H) is defined as the temperature below which
ergodicity is broken giving rise to anomalously long
relaxation times and nonzero A. We have calculat-
ed T, (H) and the properties near it. We limit our-
selves to the case of D/J (( 1, which is a reason-
able assumption for most SG's, and also assume
that h = p, H//—ka T, d —= D/ks T, and r —= 1 —T/ Ts are
small. Our main results are the following:

(1) The random anisotropy modifies significantly
both the form and the nature of the finite-field
transition, even when D is much smaller than J and
therefore does not have much effect on the zero-
field transition. In fact, in the limit of h 0, the
transition has an Ising character' with

7, = [h (m+2)/4m]'i (4)

for any fixed d. This result holds in the range
h « d, which we term the strong-anisotropy re-
gime In this. regime both Qi' and b, i" are, to leading
order, isotropic already near T„because of the
strong mixing of the spin components by D, and
their T and 0 dependence is similar to the Ising
case.

(2) In the weak anisotr-opy limit, d(( hst2, the
transition is essentially identical to the GT one, Eq.
(2), with q')) q», a'«a» (z and y denote longi-
tudinal and transverse directions, respectively) near
the transition, as in the D=0 case. In the inter-
mediate regime h ~2&& d && h the degrees of
freedom which trigger the transition are still mainly
the transverse spin components implying that 5'« 5" near T, . However, the shape of the critical
line is modified by D as will be described below.

(3) For all values of D, a macroscopic anisotropy
constant K appears below T, (H) and gives rise to
uniform transverse ireversibility which can be ob-
served in transverse susceptibility or torque mea-
surements. In the weak-anisotropy regime, E
behaves near the GT line as E~ Tsd2h(r —r, ) and

in the strong anisotropy limit as E~ Tsd (7' —r,').
In all cases K is coupled mainly to A~ and is not ex-
pected to exhibit further crossover at a lower tempera

ture.

Besides the obvious limitations of the mean-field
approximation, the lack of a reliable estimate of the
microscopic coupling constant D makes it difficult
to compare the above results with experiments. In
principle, the observed AT shape of the critical
lines is consistent with the theory if the applied
fields are sufficiently smail so that the strong-
anisotropy limit has been reached. However, on
the basis of the available data on the low-T values
of E it seems likely that the anisotropy in binary al-
loys, such as pure CuMn, is not large compared to
fields of the order of a few kilogauss. " If this is
indeed the case and the observed lines are only
strong-irreversibility crossover lines then measure-
ments of the anisotropy constant E should yield a tran
sition temperature which is higher in the presence of a
field than that observed in "longitudinal" measure
ments. Furthermore, this field-dependent tempera-
ture should be quite sensitive to the addition of a
few hundred parts per millon of nonmagnetic im-
purities which increase the DM anisotropy by or-
ders of magnitude, although they do not affect T~.
It would be very interesting to test these predictions
by accurate measurements of E( TH) in e.g. ,
transverse susceptibility or torque experiments. We
proceed to give more details of the theory.

We study model (3) by adding relaxational
dynamics to the system and using the SG dynamic
theory developed earlier. 2 We define the average
local susceptibility and correlation functions,

x&"(t —t') = (((BS,"(t)/BH;"(t')) )„
Ci'"(t' t) = (((S,—(t) S,'(t')) )„

where the inner brackets () indicate an average
over the thermal noise. As in the Ising case, 2 the
low- T phase is characterized by a hierarchy of infin-
itely long relaxation times t„s C [0, 1], with

t, && t~ if s & p. This gives rise to time-dependent
order parameters Q""(s)=—C""(t,) and X""(s)
'= Xi'"(i0, ) = Xi'"(I) + hi" (c0,) where 1 refers to
the nonequilibrium (i.e. , ac) limit, c0=i0&= I//tt.
We use a coordinate system in which both Q and X

are diagonal, Q""=q"5"", and similarly for X" and
The order parameters are determined via the

partition function Z =fDS exp( PHM„+Pp, H—
x S*) where

1—H „=X„„Ai'" —(Si')'X"(1)—S~ ds [z"(s) —m,"dA"/ds],
i

and A""= (Jz —D2) 5""+D2 and z (s) are random Gaussian vectors with variance

[z(s) z(p) ] = h(s —p) —[(J'—D') (A 'QA ')+ D'A '(Trg) ].
ds
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m, is the partially averaged magnetization, m, = [(t)lnz/t)pH)]„and the order parameters are Q (s)
~„„'[8m~/8z, "]. Here, the square brackets with and without subscript s denote

the averages I mdz» and Jmdz~, respectively. In order to determine T, (H) and to obtain informationp&s
abo« the low- Tstate, we expand the self-consistent equation for 6 (s) in powers pf Q, yielding tp leading pr
der the following equation:

X„[5"'—X~z"(s) —2b "(s)hi'"+ 0(b z) ]»I "i'dA"/ds = 0, (6)

where X~z" (s) is the average of the square of the
partially averaged nonequilibrium susceptibility ma-
trix,

T'X~"(s) =- {([(S~S")],—[m~m" ] )'}

Substitution of s =1 in Eq. (6) yields the marginal
stability condition

which holds everywhere in the SG phase. The criti-
cal temperature T, (H) is the temperature at which
the high-T phase [Q(s) = Q, 5=0] satisfies Eq.
(7). It was noted earlier'3 that, in the SG phase,
one must distinguish between the local transverse
response X»(s) and the uniform one, which we
denote by Xr(s). The former corresponds to a

small rotation of the field on a particular spin while
keeping intact the uniform field which acts on the
rest of the system, and may develop long time tails
even when D=O. On the other hand, X~ is the
response to a uniform rotation of the external fields
which does not develop irreversibility if D=0.
Thus, for all values of D, the equilibrium suscepti-
bility Xr(0) is equal to M/H, where M = [(S') ], as
a result of the average isotropy of the system. On
the other hand,

Xr(1) = M/H d»(0) (1+—HM„/K)

where M„ is the remanent magnetization —HA'
and K is the macroscopic anisotropy constant. Ex-
tending previous calculations' of K to finite fields
yields

h lines are finite-time effects, then we expect
t as the field becomes smaller the line will cross-

er to 7~ h since the finite time contour-s are most

p bably analytic in h. On the other hand, in the
weakly anisotropic mean-field system the line be-
comes more singular as h 0. Thus, checking the
present work's predictions by transverse-irrevers-
ibility measurement might shed light on the impor-
tant question whether the observed critical lines are
related to the mean-field transitions or not. Finally,
we stress that although we have discussed here a

specific kind of random anisotropy, the general
features of the crossover to Ising properties are ex-
pected to hold also for other types of randomly an-

isotropic interactions (e.g. , dipolar anisotropy) or
even local anisotropy fields as long as they random-

ly mix all spin directions.

&"(s) = 3 [q'( I) —q'(0) ]/(m + 2),

q"(0) = [h (m+2)/4ml', and q" (1)=r inde-
pendent of p, . These results as well as Fq. (4)
agree, when m=1, with the Ising ones. In the
weak-anisotropy regime d (( h ~ the results of the
isotropic case (D =0) are unchanged to leading or-
der, giving q'= h/K2, q»(1) —q»(0) —1- T/T„
b»(s)a: [q»(1)]z—[q (0)]z, and 5'(s)~ [q (l)3
—[q»(s) ]3. The anisotropy induces a nonzero
value of q»(0)~ (hdz) ti3 which is very small com-
pared to q'(0). Also, 5'« b,» near T, (H) and the
two become comparable only below a crossover
temperature 7'~ h . In the intermediate regime,
the zero eigenvector of Eqs. (6) and (7) is mostly in
the transverse directions, implying that A~&& 5'
near the transition. However, the anisotropy is suf-
ficiently strong to modify the shape of the line. If
h « d « h, then r,~ (hdz) ' 3, whereas if h

&& d && h, we find 7, = d independent, to
leading order, of h.

In conclusion, we point out that if the observed
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Since K is coupled to the (strong) transverse ir-
reversibility 5", it is not expected to show a sharp
crossover at lower temperatures. tha

Expanding Eq. (7) and the equations of state we pv
have derived Eq. (4) for d )) h . In this regime, rp
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