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Lower Critical Dimension of the Random-Field Ising Model
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A new argument is given for a lower critical dimension dI = 2 for the Ising model in a ran-
dom magnetic field. It forms the basis for a proof that the three-dimensional model exhibits
long-range order at zero temperature and small disorder. This settles the controversy
between the values dI = 2 and dI = 3.

PACS numbers: 75.10.Hk

In this paper I present a new argument that the
lower critical dimension, d~, for the Ising model in a
random magnetic field is 2. Previous heuristic pro-
posals for dI=2 and also for dI=3 have been given.
Both cases have adherents. The question hinges on
whether or not long-range order occurs in three
dimensions, at low or zero temperature in the pres-
ence of a small, random magnetic field.

This physics issue has been resolved by the find-
ing of a new, exact formula for the ground state
energy —see (2) below. This formula is used else-
where' to prove that dI~2. The formula for the
energy has two important properties: (1) The ener-

gy is expressed as a sum of local functions of the
magnetic fields in various regions, so that it is
amenable to statistical analysis. (2) The sizes of the
regions vary through a succession of increasing
length scales (associated with an inductive analysis
of the ground state), and the probability distribu-
tions of the functions scale accordingly.

Specifically, it is shown that if the disorder is
small, the model in dimension d =3 exhibits long-
range order at zero temperature. At the conceptual
level, this argument leads to the same conclusion
for low temperatures. Indeed, I expect that a proof
for low temperatures will be possible by combining
the methods described here with the expansion
methods developed for disordered systems by
Frohlich and Imbrie. 2

The model is defined by the Hamiltonian for a
finite subset A C Z with plus boundary conditions:

H+(A) = X 2 (1—o-;oj) —X ,'h;(r;—
( I',J')

Here a.; = + 1 for i C Z3, a.; = 1 for i f A, and (i,j)
denotes a nearest-neighbor pair. The magnetic
fields h; are taken to be independent random vari-
ables with a common Gaussian distribution with
mean zero and width (h; ) 'i = e (a measure of the
disorder). The angular brackets indicate an average
over the magnetic fields. We write P(E) for the
probability of the event E. Let us write o- '"(A+ )
for the spin configuration of minimum energy

H+ (A). It is unique, with probability 1.
At temperature T= 0, the question of long-range

order reduces to properties of o '"(A+) as A

increases to Z3. We have long-range order if
0., '"(A+) is more often +1 than —1 for some
fixed i 6 Z, and if the disparity is uniform as A in-
creases to Z . This is the content of the following
theorem, proved in Ref. 1.

Theorem. —Let A„be a sequence of cubes cen-
tered at the origin 0 6 Z . There exists a constant
C ) 0 such that for any i 6 Z and any n,

P(o m~~(A+ ) = —1)~ exp(C/e )

The limit lim„a. , '"(A„+)—= a.;
'" exists with

probability 1 and satisfies the same bound.
Other results of Ref. 1 include a proof of near-

exponential decay of correlations between ground-
state spins:

0-minty min —

vermin

Cr
min

~ exp( —cj exp[ —c'(ln ln j)2]e 2}.

In Ref. 2 it is shown that the model has no long-
range order for large e. Hence there is a T=0 tran-
sition from long-range order to absence of long-
range order as the disorder parameter e increases.

I expect that my methods will be useful in other
problems, for example in studying the interface in
random-field models. A reasonable conjecture is
that the interface in d dimensions is rigid for d ) 3,
as a result of the similarity with the (d —1)-
dimensional bulk problems studied here. The
continuum interface may of course be much
rougher. 3 4

We recall that the lower critical dimension is de-
fined as the dimension above which long-range or-
der occurs. Recent numerical work5 has indicated
ordering in three dimensions, which would imply
dI = 2. However, neither the domain-wall argument
for dI = 2 nor the dimensional-reduction argument
for dI=3 has been universally accepted. Domain
walls are defined as surfaces separating regions of
constant o-. According to the domain-wall argu-
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ment, 7 the typical fluctuation of the magnetic field
energy in a domain of linear dimension L is of the
order of L"~ . This should be smaller than the
domain-wall energy L ' in an ordered state; hence
d ) 2 is necessary for long-range order. As pointed
out by Imry, this is an argument for d&

~ 2, rather
than for di=2, because other mechanisms could
destroy long-range order in three or more dimen-
sions. This is in fact what was argued for in some
of the interface work. The most obvious mecha-
nism is the entropy of domain walls. There are
exp[0(Ld ')] domain walls of area Ld ', this has
the potential for swamping the small probability
exp[ —O(Ld 2) ] that the magnetic field energy in-

side any particular domain wall is larger than the
surface energy.

The entropy problem was solved by Fisher,
Frohlich, and Spencer and by Chalker. ' They
used coarse-grained domain walls to exploit the
large degree of dependence amongst the field ener-
gies for different domain walls. Their result is that
for d & 2 it is unlikely that any domain wall sur-
rounding the origin encloses a total field exceeding
the area of the wall.

The second problem with the domain-wall argu-
ment lies with the assumption that the energy shift
resulting from forming a domain wall is essentially
the sum of the magnetic fields inside the domain
wall. This assumption can only be valid if the sys-
tem is known to be ordered, so that domain walls
within the given domain wall are unimportant. For
example, it almost certainly fails for d=2, where
the model is generally believed not to have long-
range order. It has recently been argued" that
domain walls within domain walls raise dI to 3, in
contrast to the present results.

The problem is circumvented in my argument be-
cause I use an exact formula for the energy shift,
valid independently of the behavior of the system
(ordered or not). However, in three or more
dimensions, there is sufficient control over the ran-
dom variables appearing in the formula to show that
there is long-range order.

One might ask what when wrong with the dimen-
sional reduction, especially in light of the nonper-
turbative' and rigorous' versions that now exist.
The Parisi-Sourlas correspondence is exact only in
the case of unique solutions to the equations of
motion, as was pointed out by Parisi and Sourlas. '

This excludes the case of most interest for the Ising
model at low temperature, since the desired interac-
tion potential is nonconvex. It is still possible that
the correspondence is of relevance in a disordered
phase, where it would be more reasonable to as-
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= ——,
' Xh, +

~.v(~) c p
r, (h). (2)

Here y runs over all possible connected domain
walls, and V(y) denotes the volume enclosed by y.
Each random variable r (h) depends only on h; for
i E B(y), where B(y is a cube of diameter
2" r + with diam(y) C [2"(~',2"'&'+'). This for-

mula is expression of the fact that the ground state
can be obtained through a sequence of local ground
states in cubes B(y) on increasing length scales.

To see how this is accomplished, let us say that y
is favored (+) if it is an outer domain wall of the
configuration o. '"(B(y)+), the local ground state
in B(y ). [Outer means V(y) P V(y') for any oth-

er domain wall y' of the configuration. ] Further-
more, let us say that y is maximal ( & V+) if it is
favored (+), if V(y) (:- V, and if there is no other
favored (+) domain wall y' with V(y) (:- V(y')
(: V. It can be shown' that the maximal ( G A+ )

domain walls are the outer domain walls of the
ground state o. '"(A+). This fact, together with

the fact that favored (+) domain walls have nonin-

tersecting interiors, allows us to derive (2) as a kind

of telescoping expansion. For any VCZ, we put

H+;„(V) =H+(o. '"(V+))+ X —,'h;,
i6 V

y maximal ( Q V+)
H:;„(V(y)), (4)

0, if y is not favored (+ ),
Hm;„( V(y) ) —E+ ( V(y) ), otherwise.

Here maximal ( g V+) is defined in the same way
as maximal((: V+), only replacing (: with
everywhere. It is easy to see that E+ ( V)
—g;~ v —,

'
h; is the energy of a comparison confi-

guration in V equaling o. '"( V(y)+ ) in each
V(y), y maximal( g V), and equaling I elsewhere.
Thus r~ measures the amount that the energy can
be lowered by permitting y to occur in V(y)+.
This implies that r~-0, with r~ ( 0 if y is favored
(+). As a consequence of all these definitions, we

sume a convex potential.
I now explain why the three-dimensional ran-

dom-field Ising model should be ordered. Let us
take A = Z3 in this discussion. The main point is to
expand the ground-state energy in terms of local
random variables,

Ha(~min(A+ ) )
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have the following expansions:

H+;„( V) = (6)
~.v(~) g v

r), . (7)
):V())P V

[We assume V= A or V= A(y) with y favored
(+).] Working by induction on diam( V), we note
that (6) implies (7) for larger V's by substitution
into (4). Furthermore, (7) implies (6) by the de-
finition of rpv (1) Vis the boundary of V). We ob-
tain finally the desired expansion (2) by combining

t

(3) and (6).
We now obtain the long-range order from an esti-

mate on the distribution of the r„'s. Consider all
domain walls y' with 8(y') =8„, a cube centered
at x, and with k(y') =k, area(y') C [a, 2a),
{ V(y')

~
C [w, 2w). If the number of such domain

walls is in the range [v, 2v), then we define

rky~yg(h)xrg(h)

Otherwise, we put rk, „„(h)=0. Putting N(a, w)
= —,

'
log2( w/a), we formulate our main estimate:

P(rk, „„„(—R) ~ exp —
2 exp( —cp[lnN(a, w)] ) '.(va+R)'

6 vN
(8)

Here co is a constant, and R ~ 0. In the simplest case, R =0, v = 1, and the right-hand side is bounded by
exp[ —(a2/e2w)t ')) for any fixed small q This .estimate exhibits the basic scaling (area)2/volume in the
exponent, up to logarithmic corrections involving N(a, w). Since a /w ~ 2 in three dimensions, we easily
see that with probability 1 —exp( —C/a ), there is no domain wall y surrounding the origin with r~ ( 0.
However, if o.p= —1 in the ground state, then there must exist a favored (+) domain wall surrounding the
origin. Since such contours satisfy r~ ( 0, we obtain the long-range order (1).

The main estimate (8) is proven by induction on N(a, w). This means that information about how likely it
is for domain walls of a certain size to appear is used to estimate probabilities for larger domain walls. In or-
der to see why an estimate such as (8) should hold, we express r„ in terms of r 's with V'(y') g V(y). This

y
is done by noticing that

H~+;„( V(y) ) = area(y) + X h;+ H~;„( V(y) ),
I c v(q)

where V(y) is obtained by deleting from V(y) sites adjacent to y, and where H;„ is defined as in (4) but
with fields and boundary conditions flipped. This identity is just a reflection of the fact that if y is favored
(+), having plus boundary conditions on V(y) is the same as having minus boundary conditions on V(y).
With use of (5)-(7), this implies that

r~(h) =area(y)+ X h;+
ie v(y) y': v(~') g v(~)

r, ( —h)—
)'': V() P V(y)

r, (h). (9)

The field term can be treated as in Ref. 9, yielding
an estimate like (8) (without the inside exponen-
tial). The other terms form almost a sum of sym-
metrized random variables. To deal with the entro-
py problem (too many domain walls to permit indi-
vidual treatment) we reformulate (9) in terms of
the aggregate variables rk, „„.Except for some
harmless positive terms on the right-hand side, we
obtain a sum of symmetrized, essentially indepen-
dent, random variables for each scale k and each
a, w, v. (Independence is a consequence of locality;
r„,„„„depends only on h; for ~i

—x~ ~2k+2. )
These properties and the bound (8) allow us to
show that it is unlikely for the symmetrized terms
to exceed area(y) in magnitude (as would be
necessary for r~ ( 0), for any y contributing to
rk, ,„. Again, coarse-graining methods areneed-

ed. In this way we recover (8) for larger values of
N(a, w). The factor exp{—cp[lnN(a, w) ]2) con-
trols the deterioration of the estimates (due to sums
over k, a, w, v) as the induction proceeds.
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