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Symmetric and Nonsymmetric Tricritical Points in Liquid Sulfur Solutions
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The dilute n 0 vector model, recently used to model the phase equilibria in sulfur solu-
tions and living polymers, possesses a nonsymmetrical tricritical point of the sort found in
three- and more-component solutions at a small nonzero value of the magnetic field as well
as the symmetric tricritical point at zero field. This has interesting consequences for the
phase diagrams of sulfur solutions and suggests a resolution of a number of discrepancies
between the earlier (zero-field) theory of Scott and experiments on sulfur solutions.

PACS numbers: 64.70.Ja, 64.40.Fr, 82.35.+t

The phase diagrams of elemental sulfur dissolved
in various organic solvents have interesting and
unusual features. They exhibit' a high-tem-
perature miscibility gap bounded below by a lower
critical solution temperature (LCST) as well as the
more familiar low-temperature miscibility gap sur-
mounted by an upper critical solution temperature
(UCST). Nearly twenty years ago Scott s proposed
an elegant chemical equilibrium theory to explain
these phase diagrams, based on the ideas of Flory, 7

Gee, and Tobolsky and Eisenberg, and studied
these systems experimentally.

Recently we have developed a nonclassical lattice
solution model for the polymerization of sulfur'
and sulfur solutions' ' as well as for living poly-
mers' and have shown that it is identical to the
n 0 limit of the n-vector model of magnetism, or
in the case of solutions to an annealed dilute n 0
vector model. We showed that Scott's theory can
be viewed as the mean-field approximation to the
dilute n 0 vector model and that the LCST found
by Scott corresponds to a (zero-field) symmetric tri-
critical point in the dilute magnet, analogous to that
used by Blume, Emery and Griffiths' to model the
phase separation in He- He mixtures at very low
temperatures. Scott's theory contains an equilibri-
um constant K& for opening an S8 ring to form a
diradical S8 chain, and an equilibrium constant Ep
for propagating a chain of n S8 units to a chain of
n + 1. Scott (and we) worked out the consequences
of the theory for the phase diagrams of sulfur solu-
tions in the limit K& 0. Since K~ is believed to
be of the order of 10 ' for pure sulfur near the
transition, this seemed to be a sensible approxima-
tion.

Despite the very considerable success of Scott's
theory, discrepancies with experiment remain. In
the limit K~ 0, the theory predicts that the coex-
istence curve is pointed rather than flat at the LCST
with an effective critical exponent P = 1. While the

phase diagrams of sulfur with some solvents do
show a rather pointed coexistence curve, those with
some other are very flat. Moreover, all the coex-
istence curves show distinct rounding sufficiently
near the LCST. The theory predicts the existence
of three-phase equilibrium for certain choices of the
energy parameters, but this has not been seen in
any of the systems studied. Instead of three-phase
equilibrium, a dramatic flattening of the high-T
coexistence curve was observed as the two coex-
istence curves approached one another. This effect
is so dramatic that it calls for explanation on its
own, apart from the disagreement with the theory.
The theory predicts that if by variation of a parame-
ter (such as pressure) one passes from a condition
where both UCST and LCST exist to one in which
no critical solution point exists, this should occur
via three-phase equilibrium, but experiments on
the pressure dependence of sulfur solution phase
diagrams by Schneider' find no three-phase equi-
librium but rather a smooth critical locus with a
critical double point. Increasing K& from zero to a
number of order 10 ' has no visible effect on the
predicted phase diagrams nor upon the discrepan-
cies between the theory and experiment.

In this Letter I suggest that all of these discrepan-
cies may be simultaneously resolved by two obser-
vations; one about the model, the other about sul-
fur solutions. First, I have found that the model
has a nonsymmetric tricritical point' of the sort found
in ordinary three- and more-component solutions at
a small nonzero value of the equilibrium constant
Kt (i.e., at a small magnetic field l't) in addition to
the symmetric tricritical point at K& = 0. For values
of Kt greater than this (nonsymmetric) tricritical
value, three-phase equilibrium does not exist and
the sequence of phase diagrams predicted by the
theory is exactly that observed by Schneider. '

Moreover, the resulting phase diagrams exhibit the
dramatic flattening of high-temperature phase
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boundary when the LCST is close to the nonsym-
metric tricritical point. However, the value of K1
required (about 10 I is gigantic compared to the
value for pure sulfur ( —10 ' ) and it is most un-
likely that purely physical solvent or pressure ef-
fects could change K1 by this amount.

The second observation is that chemical reaction
of a small amount of the sulfur with the solvent can
act as a dopant, drastically increasing the effective
value of K1. Recently we have considered the ef-
fect of deliberately doping pure sulfur with small
amounts of halogens on the electron-spin-
resonance (ESR) signal'9 and heat capacity2n of
pure sulfur. The effects can be understood as con-
straining the concentration of polymer ends at a cer-
tain value. This has the effect of drastically raising
the effective value of the magnetic field in the cor-
responding magnetic model. Reaction of less than
1% of the Ss rings (less than 0.13'/0 of S atoms) is
sufficient to increase KI beyond its (nonsym-
metric) tricritical value.

In Fig. 1 I show the univariant features of the
global phase diagram for various values of the mag-
netic field in the mean-field approximation. Jis the
spin coupling constant of the magnet divided by kT
and, when multiplied by the coordination number q
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FIG. 1. Phase diagram for dilute n 0 vector model

in zero and nonzero fields. Curve a, h = 0/kT= 0; curve
b, h =0.01; curve c, A=0.OS; curve d, h =0.1.

of the lattice, plays the role of polymerization
equilibrium constant K~ of Scott's theory. K is a
microscopic energy of mixing divided by kT and
plays the same role in the two theories. The dia-
gram is a projection along the axis of the chemical
potential difference, IM, ,—p, II, between spins (or sul-
fur) and solvent. Curve a is that for zero magnetic
field, h =0, and is identical with Fig. 1 of Ref. 14
(to which the reader is referred for a more detailed
discussion of the diagram and the correspondence
between the magnet and polymer theories). The
horizontal portion is the "ordinary" nonmagnetic
critical locus for separation of unlike species. The
downward-curving portion is the locus of tricritical
points and the nearly straight dashed line joining
them is the three-phase line. Also shown (dotted
line) is the locus of critical end points at which the
magnetic critical locus intersects the first-order
phase separation. For h nonzero, no matter how
small, the critical end-point line ceases to exist and
the downward-curving line ceases to be a line of tri-
critical points and becomes instead a line of (wing)
critical points. The situation is then one familiar in
the study of nonsymmetrical tricritical points': two
critical loci, each of which ends in a critical end
point, these critical end points being connected by a
line of three-phase equilibrium. As the field h is in-
creased, the three-phase line shrinks in length until
the critical end points meet at a tricritical point at
which all three phases are in critical equilibrium.
For larger values of h only a single continuous criti-
cal locus exists. Curves b, c, and d in Fig. 1 are for
h = 0.01, 0.05, and 0.10, respectively. The tricritical
point occurs at h =0.0469, qJ=1.358, qK=3.895
with m =0.129 and x, =0.595, where h =0/kTand
H is the magnetic field of the magnet, m is the mag-
netization per site, and x, —=P, is the fraction of
sites occupied by spins (volume fraction of sulfur).
According to the correspondence' between magnet
and sulfur, the fraction of S8 rings which have
reacted with solvent at the tricritical point is given
by —,

'
hm/x, =0.005.

As described in Ref. 14, a given sulfur solution is
characterized by a fixed value of TI/T~ where TI is
the UCST in the absence of any polymerization
(KI—= 0) and corresponds to qK =4, and where T~
is the polymerization temperature of pure sulfur,
432 K. As the temperature of the solution is varied
the system moves along curving path in the J,K
plane described by the Arrhenius form

't

qJ= K~ ( T) = exp 1-AHp Tp qK

p 1
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calculations leading to Figs. 1 and 2, and discussion
of the effects of nonclassical critical fluctuations
and polymeric rings will be presented elsewhere.
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