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New Conserved Quantities and Test for Regular Spectra
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When Einstein-Brillouin-Keller quantization is possible, it applies to all conserved dynami-

cal variables (not only to the Hamiltonian) and in particular to the time average of any

dynamical variable. Thus, for an integrable system of n degrees of freedom, the eigenvalues
of n independent constants of motion form a locally regular n-dimensional lattice, in the lim-

it h 0. Failure of doing that may be an indication of quantum chaos.

PACS numbers: 03.65.—w, 03.20.+i

Energy spectra often become very complicated
for highly excited systems and it is difficult to as-
cribe quantum numbers to the various levels. Yet,
these quantum numbers ought to exist if the system
is "regular" (i.e., if its classical analog is integrable)
because Einstein-Brillouin-Keller (EBK) quantiza-
tion' is a very good approximation for large quan-
tum numbers (or, equivalently, in the semiclassical
limit h 0). On the other hand, a classically
nonintegrable system is "irregular" and its energy
levels cannot be labeled in a natural way by quan-
tum numbers related to constants of motion. 4 It
would thus be very helpful to have a simple cri-
terion to distinguish regular from irregular quantum
systems (i.e., to decide whether there are "good"
quantum numbers other than the energy).

If a classical system with n degrees of freedom is
integrable (i.e., if it has n independent constants of
motion in involution) its orbits in phase space lie
on n-dimensional surfaces, conventionally called
"tori." On each one of these tori, one can draw n

topologically independent closed curves Ck and
thereby define n action variables5

X,. p; a'q'. (I)

The values of these Jk can then serve to label the
tori. Any constant of motion A therefore is a func-
tion A(Jt, . . . , J„).

EBK quantization, which is a refinement of the
old Bohr-Sommerfeld quantization, states that
Jk=ak+mkh, where the ak are constants and the
mk are integers. If we expand 2 in powers of
Planck's constant h, we thus obtain

A = A (0) + h X mkvk+ O(h ),

where vk=r)A/BJk is a function of the J;. There-
fore, the eigenvalues of A differ by h $ mkvk. This
property is well known for energy spectra but it is
actually valid for the spectrum of any constant of
motion, tf the system is integrable (so that there
are tori and EBK quantization can proceed).

It is trivial (in principle) to test numerically
whether or not a given spectrum satisfies Eq. (2).6
Unfortunately, this simple test becomes impractical
when there are hundreds of levels belonging to
overlapping "ladders. " It is then much more effi-
cient to consider n independent constants of motion
and to plot the corresponding eigenvalues in an n-
dimensional diagram, as shown below.

How can we get n constants of motion? If a sys-
tem is not integrable (or not known to be integra-
ble) we cannot find functions of the canonical vari-
ables A(p, q) having vanishing Poisson brackets
with the Hamiltonian. However, the time-average
of any bounded A (p, q) is, trivially, a constant of
motion. If the tori exist, it has a fixed value on
each torus, so that it is a function of the J; and
therefore obeys Eq. (2).

In quantum mechanics, it is very simple to con-
struct these time averages and to find their eigen-
values. Any dynamical variable, in the energy
representation, has matrix elements A,„(t)= A,k(0)
xexp[2n i(EI —Et, )t/h]. If the Hamiltonian is not
degenerate, the time average is simply obtained by
crossing out all the off-diagonal elements of A (in
the energy representation). If 0 is degenerate, one
first removes all matrix elements of A connecting
different energies, and then one diagonalizes the
resulting matrix. Once this is done, it only remains
to plot the resulting eigenvalues versus those of the
Hamiltonian and to see whether the result looks
like a regular lattice. The lattice spacing and orien-
tation may smoothly vary from one place to anoth-
er, because the vk in Eq. (2) depend on the J;.

This method will now be illustrated by two nu-
merical examples. First, consider the classical
Harniltonian

H= p)+ p2

+ (I —pt )' (M —p2 )' cosqtcosq2, (3)

where p& and q& are two pairs of canonical variables,
and I. and M are constants. It is convenient to de-
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fine new variables L„=(L2 —pi' )'i2 cosqi, L
= (L —pt )' sinqt, and L, =pi, which satisfy the
same Poisson brackets as components of angular
momentum. Likewise, we define M„= (M2
—p2 )' cosq2, etc. The Hamiltonian (3) thus be-
comes

H = L, + M, + L„M„, (4)

and can be interpreted as representing a pair of non-
linearly coupled rotators. The classical orbits of (4)
have been discussed in detail elsewhere7: For some
values of L, M, and H, most orbits are regular, and
for other values most are chaotic. These properties
are reflected in the quantum mechanical energy
spectrum and matrix elements.

In quantum theory, the constants L and M must
satisfy L2=ii 2l(!+I) and M2=t2m(m+ I) and
the Hamiltonian (4) is a finite matrix of order
(2!+1) (2m+ 1). In this first numerical example,
I have taken l = m = 20 and t = 0.1707825. This
corresponds to L =M=3.5, giving a maximum
classical energy L +1=13.25. From Fig. 2 of
Ref. 8, the classical regular domain is ~E ~

& 9.1 and
the classical chaotic one is ~E~ & 6.6. However, for
finite h, there may still be a regular spectrum in a
domain which is classically chaotic, because of the
existence of "tori remnants" in the chaotic part of
the classical phase space. ' As long as the missing
parts of these "vague tori" are small compared to
h", EBK quantization is nearly valid and the quan-
tum system behaves as if it were regular.

In order to find the energy spectrum, it is con-
venient to use a basis labeled by j,= (pt+p2)/iI
and k, = (pt p2)/t. The Hilb—ert space then splits
into four disjoint subspaces, with j, even or odd,

and with states even or odd with respect to
k, —k, . The Hamiltonian (4) has no matrix ele-
ments connecting these subspaces. The discussion
will henceforth be restricted to the even-even sub-
space, having dimension 21 =441. The energy
spectrum is nondegenerate and symmetric with
respect to E=O.

As a second constant of motion, I took the time
average of p~+ p2, which I call P. The 441 eigen-
values of Pare (E~P~E). Figure 1 is a scatter plot
of these eigenvalues versus E, for E & 0 (the figure
is symmetric with respect to the origin). As expect-
ed, one sees a regular pattern for E & 9, which
gradually melts away for lower values of E. There
are, however, remnants of regularity (strings of
roughly aligned and equidistant points) in the disor-
dered region. These are apparently due to the tori
remnants mentioned above.

On the other hand, some deviations from regu-
larity appear in the regular zone, especially when
energy levels are nearly degenerate. This too was
expected, because degeneracy is related by Eq. (2)
to overlapping classical resonances" which generate
classical chaos.

The second numerical example is based on the
Hamiltonian'

(p+p2+X2+y2)+pp5x2y2

which, in the classical case, has mostly regular or-
bits for low E and becomes gradually chaotic for
E & 10. These properties are reflected in the quan-
tized energy spectrum. '

While the Hamiltonian (5) is more easy to
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FIG. 1. The energy levels Evs the diagonal matrix ele-
ments P= (E~(pi+ p2) ~E), for E ~ 0.
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FIG. 2. The energy levels E vs J = (E~ (xp
yp, ) IE) for E ( 0.966. (I—plotted J, rather than J,

because the result is visually nicer. )
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J = (E~(xp„—yp„)2~E) (6)

versus E, for h =0.01. A regular pattern is ap-
parent, showing that the energy levels fall in sets
which can be labeled by a second quantum number.
(The situation for higher E will be discussed in a
separate paper. )

The method illustrated above is readily general-
ized to more than two degrees of freedom. Three-
dimensional patterns can be visually inspected with
the help of computer graphics. Higher-dimensional
ones would require a suitable pattern-recognition al-

gorithm. In summary, these regular or chaotic pat-
terns of quantum levels play a role similar to that of
Poincare surfaces of section in classical mechanics.

comprehend than (4), it has an infinite number of
energy levels and some approximations are needed.
I took as the basis functions u (x) u„(y)
+ u (y)u„(x), where the u are one-dimensional
oscillator wave functions. I considered only one
symmetry class (m and n even) and obtained 600
well converged levels.

The square of the angular momentum (xp~
—yp„)2 is not a constant of motion, but has no ma-
trix elements connecting this basis with others be-
longing to different symmetry classes. Figure 2 is a
plot of
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