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We introduce a noncanonical ("new-time") transformation which exchanges the roles of a
coupling constant and the energy in Hamiltonian systems while preserving integrability. In
this way we can construct new integrable systems and, for example, explain the observed du-

ality between the Henon-Heiles and Holt models. It is shown that the transformation can
sometimes connect weak- and full-Painleve Hamiltonians. We also discuss quantum integra-
bility and find the origin of the deformation —
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PACS numbers: 03.20.+i, 02.30.+g

The search for (and the discovery of) integrable
dynamical systems is a most fascinating branch of
nonlinear physics, one which has been the center of
intensive activity in the past decade. ' Integrable
systems are quite rare and still only a few examples
are known. In this paper we will present a novel
transformation that relates integrable Hamiltonian
systems.

Several methods have been devised for the inves-
tigation of integrability. One method that has met
with particular success in the last few years is singu-
larity analysis, which associates integrability with
the Painleve property, i.e., a movable polelike
singularity (t —to) in the solution of the equa-
tions of motion. It was used a century ago by
Kowalevskaya, 2 who identified with it the last in-
tegrable configuration of the heavy top. The
method was resurrected by Ablowitz, Ramani, and
Segur and by now several works which have com-
bined Painleve analysis with explicit construction of
constants of motion have yielded new integrable

systems (see, e.g. , Chang, Tabor, and Weiss,
Bountis, Segur, and Vivaldi, and Menyuk, Chen,
and Lee4). However, it was soon found that there
are integrable models which do not satisfy the
above "full Painleve" property. This led to the in-
troduction of the "weak Painleve" concept, 5 6 i.e.,
expansions involving movable branch points of the
type (t —to)tl' (r integer). We will discuss below
the relationship between these two types of Pain-
leve expansions.

Once an integrable potential is obtained a most
interesting question can be asked: What are the
possible perturbations of the potential which do not
destroy integrability? Such additive terms are im-
portant, because whenever such terms with a free
coupling constant are found they can lead to new
integrable systems. 7

In this paper the additive term is used in conjunc-
tion with a noncanonical ("new-time") transforma-
tion, which exchanges the roles of the coupling
constant and the energy while preserving integrabil-
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ity. This transformation becomes even more
powerful when a few judiciously chosen canonical
transformations are applied in addition. For exam-
ple we can now give a direct proof of the duality
between the Henon-Heiles and Holt systems. (By
duality we mean that the integrability of one implies
the integrability of the other. ) This duality was ob-
served by one of us using Painleve analysis, but at
that time the underlying mechanism remained ob-
scure. There are two further features that this
transformation has with respect to (i) the Painleve
property and (ii) quantum integrability:

(i) Elsewhere6 the singularity structure of the
Holt and Fokas-Lagerstrom Hamiltonians was ex-
amined and found to be of the weak-Painleve type.
In what follows we will show that through this new
transformation the above weak-Painleve systems
can be converted to full Painleve.

(ii) We have found previously that for quantum
integrability the Holt ' and Fokas ' Hamiltoni-
ans must be deformed by the surprising additional
terms, —,', f2x —and —,I g (x —+y ), respec-

tively. We show below that these correction terms
are due to quantum effects that arise in the dis-
cussed transformations.

Let us, therefore, consider a Hamiltonian which
contains an additive term,

H=Hp= gF. (1)
We assume that this (N-dimensional) Hamiltonian
is integrable for every value of the coupling con-
stant g (and of course for every value of the energy
h), i.e., there exists a system of constants of motion
in involution Ik, k= 1, . . . , % The noncanonical
transformation consists of taking

G = Ha/F —h/F (2)
as the new Hamiltonian. In effect we have just
solved for the coupling constant and given it the
role of the energy, hence the name "coupling con-
stant metamorphosis. " [Most of the time the new
Hamiltonian G is very complicated, but next one
can try to use canonical transformations to simplify
it. In rare cases one obtains again a standard type
Hamiltonian as will be shown below. ]

The main result that will be used later is that the
system (2) defined by the Hamiltonian G is also in-

tegrable for every value of the coupling constant h

and, of course, for every value of the energy g. The
constants of motion that guarantee integrability are,
essentially, the Ik's. More precisely the Ik's defined
for system (1) depend explicitly on g and to obtain
the energy-independent constants of motion Jk for
the new system (2) it is sufficient to substitute
Ha/F h/F for g in the I„'s. It—is easy to show that
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the Jk's so obtained are constants of motion and in
involution. In fact one can prove the following
very general proposition: Given any function
K = K (x, ,p;), its time derivative under the Hamil-
tonian G is related to its time derivative under H by

(dK/dt)G=F '(dK/dt)H (3)

Therefore, an alternative way to look at this non-
canonical transformation is as a change in the time
variable. Introducing a time Tby

dT=F dt, (4)

we can say that if H describes the evolution in
terms of t, G describes the same motion in terms of
T.

As we have commented before, the Hamiltonian
G can have a most unusual expression. However,
in some cases suitable canonical transformations
can reduce it to a standard form. In that case one
establishes a duality between the Hamiltonians H
and G. Although no general procedure exists for
this, several interesting cases can be found.

a. Duality between the Henon-Heiles and Holt
Hamiltonians. —This was originally found by singu-
larity study, but now we can give explicitly the
transformation connecting them. Let us start with
the Holt Hamiltonian

H= —,'(p„'+py')+ —,'p, x + (y —g)x ' . (5)

This Hamiltonian is integrable for p, =1, 6, 16, and

g free. The noncanonical transformation leads to
the Hamiltonian

G = —,
' x (p„+p~ ) + —', p, x +y —hx (6)

Making now the canonical reflection p~ Y

y = —Pq and rescaling allows us to rewrite G as

G ~ x2/3p 2 + P2 + 3
p x2 + x2/3y2 hx2/3 (7)

Using finally the canonical point transformation
x = ( —,

' X),p„=Px( ,' X) '/, we obtain—

G = ,' (Px2+ Pr2) + —', ( —,
'

p, x—'+xy') —', hx, (8)—
which is precisely the Henon-Heiles Hamiltonian
(with an additive term proportional to x) which, as
is well known, is integrable for p, = 1, 6, 16."'

b. The dual of the Fokas Lagerstrom po-tential

The Fokas-Lagerstrom Hamiltonian

H = —,
' (p„'+p„') ——,

'
g (xy) (9)

does not possess any free additive terms. In this
case the duality transformation operates on the cou-
pling constant g of the potential itself:

G = —'(xy)' '(p„'+ py') ——', h (xy)' '. (10)

Next we make the same point transformation which
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led from (7) to (8), but now also for the y variable,
to obtain

G = —,
' ( YP~+ XPr ) ——,

' hXY. (11)
This is now quadratic in X, Y suggesting the
canonical transformation X= (p„+ip„)/ J2, Y
= (p„—ip„)/J2, Py= ( —u+iv)/J2, Pr= ( —u
—iv)/J2, which leads after scaling to

G = —,
' (p.'+ p.')

—i (3h)' '/6[(u' v'—)p„2u—vp„]. (12)
Finally a canonical gauge transformation p„=P„
—i(3h) t 2/6(u2 v—2), p„=P„—[i(3h) t 2/3]uv
gives the Hamiltonian

G = ,' (P„'+—P„')+—,', h(u'+ v')'. (13)
This means that the Fokas-Lagerstrom potential is
dual to the axially symmetric potential p4!

To see how the second invariant changes one just
makes the substitution (6) or (10) for g in 12 and
then one of the above sequences of canonical
transformations. As a consequence the order (in p)
of the second invariant changes and this explains
the relationship between the orders of the invari-
ants of the Henon-Heiles and Holt Hamiltonians,
which has been observed before.

Let us now turn to the singularity structure of the
above Hamiltonians. In Ref. 6 we have shown that
the Holt and Fokas Hamiltonians are of the weak-
Painleve type, i.e., their movable singularities are
branch points of the form

x y —(t t, )~t't $ n„-(t - to) "t'. (14)
n=0

However, as we have seen, these Hamiltonians are
dual to the Henon-Heiles and p4 which are full
Painleve. " In our earlier work we have argued that
weak-Painleve Hamiltonians cannot be transformed
into full-Painleve ones by changes of the dependent
or independent variables. However, the only
independent-variable transformations we accepted
had to be the same for every trajectory, no matter
what the initial conditions were, and thus indepen-
dent of the positions of the singularities. This does
not hold for the "new-time" transformation (4), as
T is now defined in terms of t and the x s and this
is not, then, what one usually calls a change of the
independent variable.

Let us see in detail how things work for the Fo-
kas Hamiltonian (9). The noncanonical transfor-
mation allows us to cast it in the form (11) (let us
take h = —', for simplicity). The corresponding
equations of motion become thus

X=XY/Y+ Y ——,
' YY X

Y= XY/X+ X ——,
' XX Y

The only singular behavior of the solutions is in this
case

X=A (T Ta—) +. . . ,
(16)Y=B(T To)— +. . . ,

with (B/2)3 = 1 and A = —,
' B2. The resonances [de-

fined as the orders of (t —to) where arbitrary
parameters can enter in the expansion] of Eq. (15)
can be easily found; they are —1, 2 (double), and 3,
and, moreover, the resonance conditions are satis-
fied. Thus (11) is of the full-Painleve type.

In Ref. 6 we have investigated the singular ex-
pansions of the original Fokas Hamiltonian. Two
such expansions were identified: one where x and y
start as (t —to)3 5 with all powers of (t —to)'t5
entering in the expansion, and a second where x
and y behave as

x —(t ta)—'4 X a„(t to)" ', —
n=0

(17)
y-A+B(t —t,)+ x b„(t to)"i'—

n=0
As we stated before, the noncanonical transforma-
tion can be interpreted as a transformation to a new
time Tdefined by (4), or in this case

dT = (xy) ' ' dt. (18)
For the first kind of singularity we have
dT~ (t —to) t dt, i.e., (T To)~ (t ——to)'t, so
that X and Y have expansions in powers of T—T0.
For the second kind of singularity we have
dTa: (t to) 't dt, i.e., T— Ta~ (t ta—)'~ . Aga—in
X and Y have expansions in powers of T To (ig-—
noring global factors). Moreover, both singular ex-
pansions for H correspond to regular expansions for
G, and conversely the singular expansions (16)
stem from a regular expansion for H.

It must be stressed, once again, that this conver-
sion from weak to full Painleve is achieved through
a noncanonical transformation. The latter intro-
duces a new time scale given by dT=F(xy)dt
which varies from one trajectory to another and in
the above cases is automatically tuned at each
singularity so as to render it of Painleve type. How-
ever, this does not work for all weak-Painleve
models, e.g. , the polynomial potentials of Ref. 5
remain weak Painleve after coupling constant
metamorphosis with respect to the most obvious
additional terms.

Let us discuss the quantum effects of the above
transformations. It is well known that even ordi-
nary point canonical transformations are very com-
plicated in quantum mechanics. For quantum in-
tegrability we have used an algebraic approach with
c-number functions and Moyal brackets. '0 This is
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closely related to the path-integral approach to
quantum mechanics, where the problems of point
canonical transformations were solved some time
ago. ' It was found, e.g. , that in two dimensions
the change from Cartesian to polar coordinates gen-
erates a correction term —,'f r—,(which appears
in the angular momentum quantization rule
L'= m' ——,').

In the present problem we also have correction
terms but now the transformation is more compli-
cated. Fortunately also the "new-time" transfor-
mation has recently been introduced for path in-
tegrals, ' ' where it is used together with a point
canonical transformation, as was done above.

Suppose, then, that we want to make a canonical
point transformation q = f(Q), p = Pif'(Q) to the
Hamiltonian —,

' p2+ V(q) and then bring the kinetic
energy to the standard form by multiplying the
Hamiltonian by f'(Q)2. The net quantum correc-
tion' that should be added to the potential can be
written in the form

V(Q) = — t2 — —— . (19)1 2 d f" 1
total 4

t t t t

It is interesting to note that this is nothing but the
"Schwarzian derivative" that has appeared recently
in some other integrability studies. '6

Let us now apply this to the present case. Going
backwards from Eq. (8) to Eq. (5) the only quan-
tum effects arise precisely from a canonical point
transformation and the ensuing overall multiplica-
tion. In this case f(X)oo X2 s, and it is easy to see
from (19) that then

a„„,V(r) = ——,', i'X-'. (20)

This is precisely the additional term that was found
before. s s Similarly to get from (13) to (9) the
steps from (13) to (11) do not generate any correc-
tions, but from (11) to (9) a transformation
f(Q)~ Q2i3 and multiplication is needed for both
the x and y variables. This yields the correction
term ——,', it (x 2+y ), which is the deformation
that was found necessary for quantum integrability
of the Fokas-Lagerstrom potential.

In the above examples we were able to find the
sequence of transformations which eliminated the
correction terms that were needed for quantum in-
tegrability. From a different point of view the ex-
istence of such a correction term can be taken as an
indication that there is another formulation (dif-
ferent coordinates, coupling constants) where no
such terms are needed, and which therefore is a
more natural one. This change of formulation can
be useful even in classical mechanics although the

1710

signal for it appears explicitly only in quantum
mechanics. The aim of the present work is to show
through examples how one can exploit the ex-
istence of a free coupling constant in integrable
Hamiltonians to obtain new integrable systems.
The cornerstone of our method was a noncanonical
transformation which converts the coupling con-
stant into energy and vice versa. When it is corn-
bined with canonical transformations it can connect
Hamiltonians of various standard forms. In the
cases of Holt arid Fokas-Lagerstrom potentials it al-
lows the conversion from weak to full Painleve, and
it explains the correction terms that were found
necessary for their quantum integrability. We be-
lieve that these rich implications of the presence of
additive terms in integrable systems, combined with
the coupling-constant metamorphosis, will stimu-
late further search for such terms in the cases
where they are not known yet and spur the study of
integrable systems in general.
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