Universal Power Law for the Dimension of Strange Attractors near the Onset of Chaos

In a recent Letter¹ it was shown that the envelope of the Lyapunov exponent of one-dimensional, one-parameter familes of dynamical systems that period double on their way to chaos rises like $(\mu - \mu_{\infty})^{\beta}$ where μ is the stress parameter, μ_{∞} is the point of accumulation of period doublings, and $\beta = \ln 2/\ln \delta$, $\delta = 4.669$... Here we comment that (i) this result can be generalized to the (single) positive Lyapunov exponent in any dissipative multidimensional map $M_{\mu}: \mathbb{R}^F \to \mathbb{R}^F$ that undergoes period doubling, and (ii) that this implies a universal scaling law for the dimension of strange attractors which develop after the completion of a cascade of period doublings. By this we mean that the information dimension² D_1 depends on the stress parameter μ according to $(D_1 - 1) \sim (\mu - \mu_{\infty})^{\beta}$ for values of μ that do not belong to a window of periodicity.

The vector of Lyapunov exponents, $\vec{\lambda}[M_{\mu}]$ obeys the identity $\vec{\lambda}[M_{\mu}] = 2^{-n}\vec{\lambda}[T^{n}M_{\mu}]$, where T is the doubling operator.³ For $\mu - \mu_{\infty} << 1$ one can linearize T and show that $\vec{\lambda}[M_{\mu}] = 2^{-n}\vec{\lambda}[G + \delta^{n}(\mu - \mu_{\infty})aH] = (\mu - \mu_{\infty})^{\beta}\vec{\lambda}[G + aH]$. Here G is the fixed-point map of T at μ_{∞} , a is a number, and H is the eigenfunction in the (single) unstable direction. The map G has F - 1 (negative) infinite Lyapunov exponents due to infinite contraction rates in F - 1 directions.³ Accordingly, F - 1Lyapunov exponents of M_{μ} may reach a (negative) finite limit (a "regular part") when $\mu = \mu_{\infty}$ and only the one associated with the singled out direction in phase space³ vanishes like $(\mu - \mu_{\infty})^{\beta}$ (i.e., is purely "singular").

To calculate the dimension, we invoke Kaplan-Yorke (KY) formula^{4,5} $D_1 = j + \sum_{i=1}^{j} \lambda_i / |\lambda_{j+1}|$, where *j* is the highest index for which $\sum_{i=1}^{j} \lambda_i \ge 0$. Since $|\lambda_{j+1}|$ would be dominated by its regular part, the considerations above lead directly to the *universal* scaling law of $(D_1 - 1)$.

We tested the prediction numerically in two examples, i.e., Helleman's standard map $(x',y') = (2\mu x + 2x^2 + by,x), b = 0.3, \mu_{\infty} = -0.7639$, and the simple three-dimensional map $(x,y,z) = (1 - \mu x^2 + by + cz,x,y), b = c = 0.15, \mu_{\infty} = 1.3892$. Excellent agreement with the scaling law of $(D_1 - 1)$ is found for all values of μ that do not belong to a window of periodicity; see Fig. 1.

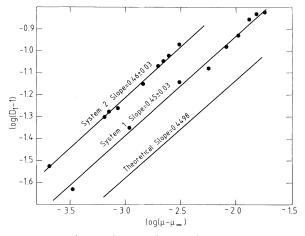


FIG. 1. $\ln(D_1-1)$ vs $\ln(\mu-\mu_{\infty})$ for the examples discussed in the text.

An experimental verification of the scaling law of (D_1-1) is particularly important since it would serve as a test of the KY formula in addition to providing support for the theory leading to this scaling law. Such a test is important since a rigorous proof of the KY formula as an equality for high-dimensional systems is still lacking, although insight on its validity was obtained in Ref. 5.

This work has been supported in part by the Minerva Foundation, Munich, Germany.

Avraham Ben-Mizrachi

Itamar Procaccia

Department of Chemical Physics The Weizmann Insitute of Science Rehovot 76100, Israel

Received 27 January 1984 PACS numbers: 03.20.+i, 02.30.+g

¹B. A. Huberman and J. Rudnick, Phys. Rev. Lett. **45**, 154 (1980).

²H. G. E. Hentschel and I. Procaccia, Physica (Utrecht) **D8**, 435 (1983).

³P. Collet, J. P. Eckman, and H. Koch, J. Stat. Phys. **25**, 1 (1981).

⁴J. L. Kaplan and J. A. Yorke, in *Functional Differential Equations and Approximation of Fixed Points*, Springer Lecture Notes in Mathematics Vol. 730, edited by A. Dold and B. Eckman (Springer-Verlag, Berlin, 1978), p. 228.

⁵P. Grassberger and I. Procaccia, to be published.