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Algebraic Approach to the Scattering Matrix

2 JULY 1984

A purely algebraic procedure is presented for calculating
belonging to problems associated with the group SU(l, l).
menting a recently introduced group-theoretic approach to
work that characterizes asymptotic behavior. Our formula
group, which contains the symmetry transformations for a
Poschl-Teller potentials are discussed to illustrate our meth

PACS numbers: 03.80.+ r, 11.20.Dj

Dynamical groups have proved to be useful in
describing bound-state spectra in nuclei' and
molecules. Recently the group-theoretic ap-
proach has been extended to the continuum. The
methods were illustrated for one-dimensional
Poschl- Teller and Morse potentials, whose scatter-
ing eigenstates were shown to form a basis for cer-
tain representations of the noncompact group
SU(l, l). Two types of dynamical SU(l, l)'s were
considered. In the first, called the scattering-state
group, a given representation contained eigenstates
with varying energies corresponding to a fixed po-
tential strength; in the second, known as the poten-
tial group, the basis consisted of states with a fixed
energy but corresponding to different values of the
potential strength.

Despite the algebraic classification of the continu-
ous spectrum, it was not known yet how to calculate
the S matrix in a purely algebraic way. The reason
was that the S matrix is defined through the asymp-
totic behavior of the scattering states, and in a
framework in which a state is described simply as an
abstract vector in some group representation space,
it was not clear how to incorporate the notion of an
asymptotic limit. In an earlier treatment of the
Coulomb problem, the only known example in
which an S matrix was calculated algebraically, the
difficulty was avoided, but in a way that could not
be generalized to other problems. More recently, 7 a
dynamical SU(1,1) potential group was used to
derive the S matrix for the Poschl- Teller potential.
However, the method employed was not completely
algebraic because in exploiting the asymptotic
behavior of the scattering states the algebraic
language was abandoned and use was made of an
explicit realization of SU(1,1).

The purpose of this Letter is to construct an alge-
braic framework to characterize asymptotic
behavior, so that calculations like those in Ref. 7
may be recast in purely algebraic form and then
generalized to models like those in Refs. 1 and 2 in
which only a dynamical group Hamiltonian is speci-
fied and no differential Schrodinger equation is

recursion relatio
The procedure

scattering by an
tion makes use
free particle. T

ods.

matrices
supple-

c frame-
uclidean
mb and

ns for S
involves
algebrai

of the E
he Coulo

available. Here w e shall only consider problems in
which the associated group is either a symmetry
group or a dynamical potential group, 4 both of
which have the property that they leave the energy
invariant. Our formulation of the asymptotic limit
will then make use of the Euclidean group. This is
quite natural since scattering states behave asymp-
totically like free waves and the Euclidean group
contains the symmetry operations (translations and
rotations) that leave the free-particle energy invari-
ant. The interplay between the dynamical group of
the problem and the Euclidean group will provide
us with the machinery to calculate recursion rela-
tions for S matrices in a completely algebraic way.
This procedure, when generalized, may be of use in
an algebraic treatment of atomic and nuclear col-
lisions similar to that which exists for bound
states. '

We first illustrate our approach with two exam-
ples discussed in parallel: two-dimensional
Coulomb scattering and one-dimensional Poschl-
Teller potential. The Coulomb Hamiltonian is

2Hc = P —n/r where P is the two-dimensional
momentum operator and r and Q are polar coordi-
nates in the xt-x2 plane. There is an SO(2, 1)
[ —SU(l, l)] symmetry groups generated within a
subspace of constant energy, k, by the angular
momentum (in two dimensions) L, = —i tl/tip and
the Lenz vector'e 2kL ~ where L + = [ —nr ~
+i(P+L, +L,P ~)]/2k. Here r +=e+-'~", and
P + = P

&
+ iP 2 are the spherical components of the

radial unit vector and the momentum. These gen-
erators satisfy the SU(1,1) commutation relations

[L„Lp]= +L ~, [L+L ]= —2L, .

The Coulomb Harniltonian is related to the Casimir
invariant C=L, (L+L +L L~)/2 o—f (1) by
Hc= —(cx2/4)(C+ —,') ', so that the scattering
eigenstates with energy k and angular rnornentum
m form a basis jI,m) for an SU(l, l) representation
in which

Cjl, m) =j(j +1)jl,m), L, Ij,m) =mjI, m). (2)
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2m ——,
=k%'~, r «0. (4)

The one-dimensional Poschl-Teller problem can
be cast in a similar algebraic form provided that we
imbed the one dimension in a two-dimensional
space. The resulting SU(1,1) is a dynamical poten-
tial group" rather than a symmetry group and is ob-
tained through the assignments L, = —i 8/rig,

L ~ = e -'+[ —8/Br + tanhr ( + —, —i 8/Bit ) ].
The Casimir invariant is then

C = 8'/Br' —(6'/8@'+ —,
' )/cosh'r ——,

' .

Defining the states Ij,m) by the same set of alge-
braic equations (2) we find that equation (3) still
holds but now W~ satisfies the Poschl-Teller equa-
tion

d2

df

2m 4 = k 'Il'Jm,
cosh r

Here j= ——, +i (n/2k) so that the above represen-
tation belongs to the principal continuous series and
contains m = 0, + 1, + 2, . . . . After a similarity
transformation Qr we find

Ij,m) =e' @+, (r),

where 0, satisfies the radial equation

In both examples (provided the Poschl-Teller prob-
lem corresponds to a wave from the right) we have
in the r, P realization

j m ) p e™~e —ikr ~g e™@eikr (7)

where A,B are k-dependent constants and the ap-
propriate relation between j and k is to be used in
each example.

In Ref. 7 recursion relations for A,B were ob-
tained in the Poschl-Teller problem by operating
with the raising operator L+ on both sides of (7),
but on the right-hand side (rhs) the explicit realiza-
tion had to be used. What we need now is a way to
formulate the procedure algebraically, that is
without reference to the variables r, @. We do this
by observing that the asymptotic wave functions
correspond in both examples to a free particle in
two dimensions. As explained before, we can
therefore use the Euclidean group in two dimen-
sions, " E(2), to characterize these asymptotic
states. The group E(2) has three generators: the
linear momenta P~,P2 and the angular momentum
L, . They satisfy the commutation relations

[L„P+]=+P+, [Pp,P-]=0,
where P + = P i + iP2. The asymptotic form of
these generators in polar coordinates is given by

—oo&r &0o,

where j= ——,'+ik. We can therefore write the
Poschl- Teller Hamiltonian in the form Hp T
= —(C+ —,'). Note that here the states Ij,m) be-

longing to a representation j have fixed energy k
but correspond to different potential strengths
m —4. Thus, the potential group of this problem

plays a similar role to that of the Coulomb sym-
metry group. Both leave the energy invariant, and
change a parameter I that measures the strength of
a potential (the centrifugal barrier in the Coulomb
case).

To obtain the S matrix in either example, it is
necessary to consider the asymptotic limit' r
We define the asymptotic scattering states by

Ij,m) =lim, Ij,m) and the asymptotic genera-
tors L+,L, are similarly obtained from L+,L, .
Since the algebraic properties of the generators and
the states are preserved in the asymptotic limit, it is
clear that the asymptotic generators L+,L, still
form an SU(1,1) algebra

L+ Ijm) =[m —j)(m+j+1)]' Ijm +1)
(6)L."lj,m) =mlj, m).

L =L= —i

where P+,L, clearly still obey the E(2) commuta-
tion relations (8).

Now we observe that each of the waves on the
rhs of (7) forms (for a given k) a representation for
the asymptotic E(2) algebra. Introducing the kets

I
+ k m ) = e' ~e -""" (10)

where P =P+P is the E(2) Casimir invariant.

to denote outgoing (k) and incoming ( —k) circu-
lar waves of energy k and angular momentum m,
we find

P+ Ik, m) =kIk, m +1),
L, Ik, m) =mIk, m),

P Ik, m) =k2Ik, m);

P+ I

—/, m) = —kI —k, m +1),
L, I

—k, m) =mI —k, m),
P'I —k, m) =k'I —k, m),

18
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The two irreducible representations' (l l) of E(2),
corresponding to all outgoing and all incoming
waves of energy k, are labeled by k and —k,
respectively. Using definition (10) we can rewrite
Eq. (7) in the form

Ij,m)"=A
I

—k, m&+8 Ik, m&. (12)

We now view Eqs. (11) and (12) as abstract alge-

braic relations independent of their specific realiza-
tions (9) and (10). The states

~
+ k, m) are defined

simply as eigenstates of the E(2) operators P and
L, and can be divorced from their coordinate reali-
zation (10).

We next need to represent within this algebraic
framework the action of L + on the states

~
+ k, m ) .

Inspecting our examples we observe that

—i [[——, —i u/2( + k) ]P+ + L,P+ }/k Coulomb
OO

([ ——, —i (+ k)]P+ +L,P+ }/k Poschl-Teller
(13)

t

where the + k refer to the E(2) representation in
which the operators act. We notice that in both
cases L+ is, for a given k, a function of the Eu-
clidean generators P+,L, . Now we argue that this
is a property of any SU(l, l) problem in which the
asymptotic states are labeled by E(2) . Since
SU(l, l) leaves the energy k invariant, so does its
asymptotic version and L + must commute with P,
the E(2) Casimir invariant. Since E(2) is the
"maximal" symmetry group of the free particle, no
other transformations (save discrete ones) preserv-
ing P2 exist so that L+ must be made up of E(2)
operators. Once we have a relation of the type (13)
we can get unique recursion relations for 3 and
8 by applying L+ to Eq. (12), and using Eqs. (6)
and (11). In our examples, where L+ is given by
(13), the reflection amplitude R = 8 /A satisfies

, m+-,' -if(k)
R „(k)=e", R (k).

m+ —,'+If(k) (14)

I' (m + —,
' —if (k) )

(k) = e' 4(k),I' (m + —,
' + if (k) )

(15)

where A(k) is an m-independent overall factor
determined by R p(k).

As it stands, Eq. (15) holds only for integer
values of m (for the Coulomb problem, in which m

is the angular momentum, these are the only values
of physical interest). The recursion relation (14),
however, holds for any m, this can be readily shown
by repeating our algebraic procedures for SU(l, l)
representations in which m = mo, mo+ 1,mo+ 2, . . .
~here 0~mo& 1. Thus, our methods serve to
connect algebraically all amplitudes with m values
differing by integers. In fact, relation (15) will also
hold for m values starting for noninteger mo, pro-
vided that 5 (k) is now determined by R, (k) . It

where f(k) = a/2k, 5 = m for the Coulomb problem
and where f(k) = k, 5 = 0 for the Poschl-Teller ex-
ample. Solving (14) yields

may happen that this factor b (k) is either physically
unimportant or else is known. In the Coulomb
problem, A(k) does not contribute to the differen-
tial cross section while in the Poschl-Teller prob-
lem, in the special case mp= —,, R i t(2k) is mani-

festly 0 implying that the potential is reflectionless
for all half-integer m.

For the sake of clarity we have deferred until now
discussion of an important connection between
E(2) and SU(l, l). The Euclidean representations
(11) which appear on the rhs of (12) can be directly
constructed from the SU(l, l) representations (6)
which are induced by the scattering states. This is
accomplished by a limiting process known as con-
traction. ' Defining P+ =eL+ we see that in the
limit e 0, P+,L, satsify the E(2) commutation
relations (8). The suitable limiting process for the
representations is easily found by inspecting the
Casimir invariants. In the limit e 0, the SU(l, l)
representations with j = ——, +i p reproduce the
Euclidean representations + k (11) if P ~ in
such a way that eP= +k is kept constant. For
more details about contractions see Ref. 14.

As we have stressed, the real value of the method
presented in this paper is that it provides a purely
algebraic procedure for obtaining S-matrix recur-
sion relations that may be generalized to problems
in which the Hamiltonian is expressed in terms of
generators of a group rather than as a differential
operator. We now outline the procedure when the
Hamiltonian is given as an arbitrary function of the
Casimir operator of SU(l, l), which we interpret as
a symmetry or potential group.

(i) Identify the SU(1,1) representation associated
with each energy k . A general "scattering"
representation is of the form j= ——,

' + if (k) .
Since C = ——,

' f (k) and H = k2, it is—clear that
the function f(k) is determined by the relation
connecting 8 and C.

(ii) Construct the incoming and outgoing asymp-
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totic representations. In our case these are simply the E(2) representations (11). Note, however, that fot
more complicated groups the identification of these representations may be harder and a contraction process
like the one described above for SU(1,1) can be useful.

(iii) Choose an allowed form for L+ in terms of the E(2) generators. This form is restricted since the
asymptotic generators L +,L, must obey SU(1,1) commutation rules and reproduce the Casimir eigenvalue
given in (i). In fact, the most general L+ satisfying these requirements and containing terms up to second
order in the E(2) generators is

L+ = [exp[iy + (k) ]/k} [ ——,
' + if (k) ]P+ + L,P, ), (16)

where again the + k refer to the + k of the E(2) representations. The y+ (k) are arbitrary real functions and

f(k) is the same as in (i).
(iv) Apply L+ to Eq. (12) to obtain recursion relations for the S matrix.
Step (iii) is clearly the crucial one. Any form chosen in (iii) will determine a unique recursion relation for

the S matrix at a given energy. The reflection amplitude which corresponds to the general form (16) of L+
1s

I" (m + —,
' —if (k) )

R (k) =exp{i[y+(k) —y (k)]m], b (k).
r(m+-,'+if(k)) (17)

The remarks following Eq. (15) hold here as well.
Also, when the problem is invariant under
m —m, the quantity y+ (k) —y (k) must be ei-
ther 0 or sr (for m integer).

Another potential which is known to be associat-
ed with an SU(l, l) potential group is the one-
dimensional Morse oscillator and it must therefore
be a special case of the above. This can indeed by
shown'5 by using a different realization from that of
Ref. 4.

It should be possible to generalize the method
presented here to other groups and to higher-
dimensional problems. An application of the
method to the three-dimensional Coulomb problem
where the relevant groups are O(3, 1) and E(3) will

be presented elsewhere. '5 We view our results here
as an important extension of the work presented in
a previous Letter and are hopeful that we are
closer to an algebraic description of atomic and nu-
clear collisions similar to that developed for
bound-state spectra. '
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