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We have investigated the kinetics of the NaC1-to-CsC1 phase transformation in RbI at
room temperature (P, = 3.5 kbar) by monitoring the time-dependent changes in neutron
powder diffraction peaks. Above I', the rate of growth of the stable phase increases with in-

creasing pressure, but the growth curves display a universal shape, consistent with the Kol-
mogorov model of nucleation and growth, when plotted versus a scaled time parameter
r = t/rp(P).

PACS numbers: 64.70.Kb, 61,12.Dw, 62.50.+p

In recent years there has been a renewed interest
in the process of nucleation and growth at first-
order phase transformations. ' A key concept in
modern understanding of these phenomena is that
of scaling behavior. Computer simulations of the
kinetics of order-disorder transformations and spi-
nodal decomposition show a time evolution from
metastable to stable equilibrium which satisfies
structure-factor scaling laws. Experiments on spi-
nodal decomposition in binary fluids and alloys also
support this scaling behavior. 4

At high pressures many alkali halides transform
from the NaCl (Bl) structure to the CsCl (B2)
structure. Of the many studies devoted to this
reconstructive first-order phase transformation, few
have been concerned with the kinetics. Daniels
and Skoultchi conclude that for freshly cleaved
monocrystals of RbI, the transformation proceeds
through nucleation at the surface. Hamaya and Ak-
imoto7 suggest that for polycrystalline KCl the
transformation is controlled by homogeneous bulk
nucleation for pressures not too close to P, .

In this Letter we study the transformation of
polycrystalline RbI, which transforms at a critical
pressure P, =3.5 kbar. By observing the time
development of the neutron powder diffraction pat-
tern after sudden application of hydrostatic pressure
from P ( P, to P ) P, we directly deduce X(t),
the fraction of the sample converted from meta-
stable to stable phase as a function of time. We
show that over a wide range of characteristic times,
r (P), X(t) obeys a simple scaling relation,
X(t P) =X(t/r(P)), and that the universal shape
of the growth curve is well represented by a simple
model of nucleation and growth. ~

The sample was high-purity RbI purchased from

Johnson Matthey Chemicals, Ltd. The largest
detected metallic impurity was 40 ppm K. No
analysis of anionic impurities was available. The
material was used as received and had a granularity
similar to common table salt. A 0.6-g sample was
mounted in an aluminum alloy cell of a type previ-
ously described' with He gas as the pressure-
transmitting medium. The pressure was measured,
by use of a calibrated Manganin resistor located in
the high-pressure intensifier, with a precision of
+30 bars. The accuracy of the measurement is be-

lieved to be about +100 bars. All measurements
were performed at room temperature with increas-
ing pressure.

The neutron diffractometer at the Brookhaven
high-flux beam reactor upon which the diffraction
measurements were performed was equipped with a
He-gas-filled multiwire area detector with a resolu-
tion of about 1 mm and located about 1 m from the
sample. By means of a filtered 14-meV neutron
beam it was possible to observe simultaneously
Debye-Scherrer peaks from both high- and low-

pressure phases with sufficient intensity with count-
ing times of the order of 30 sec.

A typical example of the observed time develop-
ment of a portion of the diffraction pattern is shown
in Fig. 1. The peak corresponding to the (110) re-
flection of the CsCl-type (B2) structure gradually
builds up while that of the (200) reflection of the
NaCl-type (B1)diminishes. The resulting integrat-
ed intensities of both reflections plotted versus time
for various pressures are summarized in Fig. 2.
The fraction of sample transformed is given by

I (t) —1(0) &'( ) —&'(t)
I(~) —l(0) I'(~) —I'(0) '

Pc 1984 The American Physical Society 1665



VOLUME 53, NUMBER 17 PHYSICAL REVIEW LETTERS 22 OCTOBER 1984

7- INTENSITY (orb. )
I

6j l4 min

5-
4-

INTENSITY (arb. )

24 min

XIO C/5 min
4

¹I
l—
CA

I—
LtJ 6
Z

¹5

2-

5-l

2-

I8 min

2O min

6",

'1
2-

7

~ 't

26 min

28 min

¹ 2 ¹3¹4
Z'

0 I

300
I

4000 100 200
TIME (min)

FIG. 2. Time dependence of I(t,P) [integrated inten-
sity of (110)c,c~] and &'(t,P) [integrated intensity of
(200)N,c~l. The dashed lines indicate the saturated
values.
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FIG. l. A typical example of time sequence of the dif-
fraction pattern obtained by integrating the output of the
position sensitive detector along a line tangent to the
Debye-Scherrer cone. The horizontal axis is the channel
number of the detector. Note the change of scale of the
vertical axis.

the scaling violation which occurs at P =3.53 kbar,
closest to P, .

Perhaps the simplest picture of nucleation and
growth which satisfies the required scaling is the
following. When the pressure is instantaneously
raised above P„ infinitesimal grains of stable phase
are produced randomly within the sample at a con-
stant rate, I', per unit volume. Although I'(P) is
time independent the nucleation rate decreases with
time proportionally to the fraction of rnetastable
phase remaining, 1 —X(t). Once formed, a grain
grows isotropically with constant domain-wall ve-
locity, u(P), until it is impeded by impinging on
neighboring domains. The required scaling follows
directly from dimensional analysis. Since the model
is completely characterized by two parameters I
(with dimension T 'L d in a d-dimensional space)
and u (dimension LT '), it follows that there ex-
ists a single characteristic time scale and length

where I(t) [I'(t) ] are the integrated intensities of
the high- (low-) pressure phase. Values of X(t)
derived independently from I(t) and I'(t) agree to
within —3%, which can be taken as a limit on the
absolute (random plus systematic) error of the
measurements.

At each pressure we define a characteristic scaling
time ~~~2 for the transformation through the rela-
tion X(Tt/2) = 2. Note from Fig. 2 that r&~2(P)
diverges as P approaches P, =3.5 kbar. Figure 3
demonstrates that over a wide range of pressures
X(P, t) displays a universal shape when plotted
versus a scaled time parameter, r'(P) = t/rt/q(P)
We shall now discuss the possible implications of
this scaling behavior, as shown through this univer-
sal growth curve, on the mechanism of the transfor-
mation. We will then return to a brief discussion of
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FIG. 3. The scaled curves of l(t, P)/I (P) plotted in
terms of t/~, t, . They fall into a single universal curve
except for the case of I'f = 3.53 kbar. The solid line is the
curve X(~) calculated by Eq. (5). The dashed line is the
calculation when i,= 0.3 (see text).
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scale given by

(I ud) —1/(4+1)

(u/I )1/(d+ 1)

(2a)

(2b)

respectively. The time development of any quantity
is universal when expressed in terms of the scaled
time 7 = t/7p. Similarly any quantity associated
with spatial development (e.g. , domain size distri-
bution function) is universal when expressed in a
scaled length, (= I/(p.

An explicit expression for X(t) for this model
was first given by Kolmogorov

X(r) =I-exp[- I J) V(r'}dr'], (3)

where V(t'), the volume occupied by a hypotheti-
cal "free" grain (one that does not impinge on a
neighboring grain) a time t' after nucleation, is

V(r') =D[ur']',

a=2, qr, 4qr/3 for d=1, 2, 3.

(4a)

(4b)

On substitution we find the following universal
shape for this model:

X(v) =1—exp[ ——,'qrv4], (5)

with r = t/qp and 7p= (I'v ) '~ in accordance with
Eq. (2) for d =3. This scaled theoretical curve, Eq.
(5), is compared with the experimental data in Fig.
3 and is seen to be in good agreement. The value
of ~0-——1.11~~~2 can therefore be interpreted as a
measure of I"v for the transformation process.

It is clear from Fig. 3 that at the lowest pressure
(closest to P, ), 7~g (=145 min) becomes very
long and deviations from universal scaling appear.
Among the various possibilities for this behavior we
consider specifically the effect of a finite critical
droplet size, r, . Nuclei redissolve or grow according
to whether their radius is less than or greater than
r, . We have thus far assumed r, 0. The modifi-
cation of Eq. (5) to include a finite r, has been dis-
cussed by Ishibashi and Takagi, ' who find

X(v) =1—exp[ ——,
'

qr [(7+v, )q —Yq] ],

with r, =r,/vip Since th. e formulation now in-
cludes two characteristic times, rp and r,/u, X(7 ) is
no longer universal. The dashed curve in Fig. 3 is
obtained by the choice v, =0.3. If this interpreta-
tion is correct the observed value of ~, indicates
that the critical droplet size is already comparable to
the average domain size at, say, t =

t&~2 for P close
to I', .

We are aware of the modest nature of the model
assumptions which apparently represent our mea-

surements, and we cannot justify them in detail.
For example, it is well known that the rate of
growth of grain boundaries depends, in general, on
the local curvature of the grain interface. '3 (How-
ever, Coleman'" has shown in the case of nu-
cleation by quantum fluctuations that the critical
domain size is large, at least compared to the thick-
ness of the domain wall. ) The shortcoming (as well
as the principal appeal) of the model is its
phenomenological character. If additional measure-
ments testing the length-scaling hypothesis could be
made, the characteristic size, gp, so determined
could be used in conjunction with 1 p in Eqs. (2) to
determine the basic model parameters 1 (P) and
u (P) . These quantities, particularly if measured
versus temperature, would be useful in discussing
the validity of more detailed microscopic models of
the transformation. In the hope of testing the
length-scaling hypothesis by diffraction measure-
ments, we have initiated theoretical and computer
simulations of the scattering function Sq(t) for this
model. Simultaneously we are planning to improve
the experimental resolution in the hope of observ-
ing the effects of Sq ( r) through small-particle
broadening of the powder pattern or more directly
by small-angle scattering experiments.
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