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Dynamics of Diffusion-Limited Kinetic Aggregation
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We study the dynamics of diffusion-limited cluster-cluster aggregation of aqueous colloids
using quasielastic light scattering. Scaling behavior is found for the dependence of the mean
cluster size on both time and initial concentration, and limits are placed on the scaling ex-
ponents of the cluster mass distribution. The fractal nature of the resultant clusters directly
affects the exponents, illustrating the inherent relationship between the dynamic and static
properties of kinetic aggregation processes.

PACS numbers: 64.60.Cn, 05.40.+j, 82.70.Dd

The process of kinetic growth of small particles to
form larger clusters has attracted considerable at-
tention recently, ' aroused in part by the practical
importance of such phenomena, and in part by our
generally incomplete understanding of these non-
equilibrium processes. Particular interest has been
focused on the structures of these clusters when the
growth is limited by diffusion. A general feature
of this type of aggregation appears to be the dilation
symmetry exhibited by the resultant clusters,
whether they are formed by accretion of single par-
ticles or by cluster-cluster aggregation. Most
of the work to date has been concerned with the
fractal structure of the resultant clusters. However,
the growth process is inherently kinetic, and there
have been several very recent theoretical treat-
ments of the dynamics of cluster-cluster aggrega-
tion. " Scaling forms, reminiscent of those found
in describing critical phenomena, are found for the
cluster distributions and their time dependence.
However, there is some disagreement about the ex-
tent to which a mean-field approach can successful-
ly describe the results.

In this Letter, we present an experimental study
of the dynamics of diffusion-limited kinetic aggre-
gation of aqueous metal colloids, using quasielastic
light scattering. Previous studies7' with transmis-
sion electron microscopy (TEM) have shown that
the structures of the clusters formed is self-similar,
with a fractal dimension df —1.75. Here we show
that the mean cluster size also exhibits scaling in
time as well as in initial colloid concentration. This
is a direct consequence of the fractal nature of the
structures formed, and when this is explicitly in-
cluded in a mean-field cluster-cluster model, we can
account for the measured aggregation dynamics
quite well. The dynamic behavior provides an alter-
native experimental measure of the fractal dimen-
sion. Furthermore, we are able to set limits on the
scaling exponents of the cluster mass distribution.
These experiments probe the inherent link between
the dynamics of the aggregation and the resultant

structures, a determination of which is essential for
a complete understanding of the underlying physics.

The gold colloids' consist initially of very uni-
formly sized spheres with a radius Ro- 7.5 nm and
a concentration of —10' /cm . The aggregation is
initiated by adding an uncharged organic molecule
(pyridine) which adsorbs to the surface of the col-
loidal particles, displacing the negatively charged
ions which had stabilized the colloid. In these ex-
periments, we ensure that the particles stick on vir-
tually every collision by adding a saturating amount
of the organic adsorbate. By carefully controlling
the colloid preparation, we obtain highly reproduc-
ible results, allowing both time and angle depen-
dences of the scattering to be measured. We use a
He-Ne laser operating at 632.8 nm, and measure
the autocorrelation function'4 of the scattered light
with a digital correlator.

The measured autocorrelation functions are quite
nonexponential, reflecting the distribution of clus-
ter sizes. We analyze them by calculating the initial
logarithmic derivative, or the first cumulant, ' E&,
which, at any point in time in the aggregation pro-
cess, is given by'

K (q) = [I(q, 0) ] t)tM'N(M) S (q)

X [Dq +A]dM

Here q is the scattering vector, D and A are respec-
tively the translational and rotational diffusion con-
stants of a cluster of mass M, and I(q, 0) is the
time-averaged total scattered intensity. The distri-
bution of clusters is represented by N(M) and the
scattering from each cluster has a structure factor
given by'6 $~(q) —M 'q, for qR )) 1. The

—d

radius of gyration of the cluster, R, is assumed to
be fairly well defined and is given by M=MOR
Except at the earliest times, all our measurements
are performed in the regime where qR «1. To
determine the dominant mechanism causing the
decay of the intensity autocorrelation function,
we plot the first cumulant, measured at the same
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elapsed time, as a function of q in Fig. 1. The
large error bars at the smallest angle reflect the pos-
sibility of additional scattered light reaching the
detector, causing a heterodyne measurement. As
shown in Fig. 1, the data are well described by a
linear fit in q, with an intercept near the origin.
Thus the decay is dominated by translational rather
than rotational diffusion, or internal modes. With
the assumption that D —R ', the scaling behavior
of the first cumulant,

IC, —J|M fx(M) dM, (2)

is a moment of the cluster mass distribution func-
tion. From this, we obtain the effective hydro-
dynamic radius, RH, which is well represented' by
R. The time dependence of R will match that of
the moment of the distribution probed by Ei, al-

lowing us to study the dynamics of the aggregation.
We measure R as a function of time and show the

results in a logarithmic plot in Fig. 2. These data
are obtained at a scattering angle of 120', but simi-
lar results are obtained at other angles. As indicat-
ed by the data in Fig. 2, we find a scaling behavior
of the mean cluster size in time. We can obtain a
reasonable description of our observations by expli-
citly including the fractal structure of the clusters in
a mean-field treatment of the dynamics. We calcu-
late the growth rate for a mean cluster mass, dM/dt
On the assumption of cluster-cluster aggregation,
the dominant growth occurs by aggregation of two
clusters of roughly equal size, so that dM —M.
The rate of aggregation is determined by the dif-
fusion equation, from which we obtain dt —1/
SmRCD, where C is the particle concentration.
Furthermore, D = kT/6rrriR, where k, T, and q are
Boltzmann's constant, the temperature, and the
viscosity, respectively. The number of particles is

conserved, and is determined by the initial concen-
tration, C = Ca/M Thus, both the R and Mdepen-
dences are eliminated and dM/dr=constant, in-
dependent of the fractal nature of the clusters. We
note that a more rigorous treatment of this type of
aggregation using the Smoluchowski equations'
gives this same result. After integration, however,
we explicitly use the fractal scaling of the mass with
radius, and obtain

$/d
4CpkT

R — t, R »Rp. (3)
p

The scaling exponent, 0.56, obtained from a least-
squares fit to the data in Fig. 2 is in excellent agree-
ment with the predicted value of i/df=0. 57. We
can also estimate the value of the proportionality
constant, as Cp is known from the preparation con-
ditions and Mp can be determined from the TEM
study of these clusters. We obtain a value of—1.1 in units where the radius is measured in mi-
crons and time in hours. This is to be compared
with the value of 0.60 obtained from the fit. Con-
sidering all the approximations made in this calcula-
tion, the agreement is quite good.

Further confirmation of the accuracy of this mod-
el can be obtained by measuring the dependence of
the aggregation kinetics on the initial particle con-
centration, Cp. We obtain both the prefactor and
the exponent from a linear least-squares fit. The
exponent is found to be independent of Cp, while
the variation of the prefactor is shown in a loga-
rithmic plot in Fig. 3. A least-squares fit to the data
yields a slope of 0.56, again in excellent agreement
with the behavior predicted by Eq. (3). As is the
case for the time dependence, the observed scaling
exponents of R with Cp are a direct consequence of
the fractal nature of the clusters formed.
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FIG. 1. The dependence of the first cumulant of the
intensity autocorrelation function on q . The solid line is
a least-squares fit to the data.
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FIG. 2. Logarithmic plot showing the scaling of the
mean cluster radius with time. The solid line is a least-
squares fit to the data and corresponds to R = 0.60t
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We also monitor the average intensity of the scat-
tered light, which rises very rapidly initially, but
when 8 becomes comparable to q

' ( —50 nm),
the intensity remains constant in time, despite the
fact that the characteristic cluster size is growing.
Since df ( 2 and the total scattered light is a small
fraction of the incident light, we assume S~(q)—M '. Thus, when qR ) 1, the total intensity
scales as I(q, 0) —fMN(M)dM This is. simply

the total mass in the system, which remains con-
stant, independent of time. Physically, this behav-
ior arises because of the ramified structure of the
fractal clusters, which allows the total mass of the
aggregate to contribute to the scattering. By con-
trast, a solid gold sphere with qR ) 1 exhibits the
traditional Mie scattering which has a very compli-
cated behavior as the size increases, and the total
scattering intensity would not remain constant.

The scaling behavior of the mean cluster radius
with time offers an additional experimental method
of measuring the fractal dimension. It is particular-

ly noteworthy that this dynamic measurement
yields important static structural information, and
this emphasizes the kinetic nature of the aggrega-
tion process. However, these results are only valid
for the case of diffusion-limited aggregation. When
substantially smaller concentrations of organic ad-

sorbates are added to the colloid, we find that the
aggregation proceeds much more slowly and has an
entirely different character. ' Instead of scaling
with time with an exponent less than 1, the
behavior of the mean radius with time is better
described by an exponent that is greater than 1,
R —Rot . Furthermore, TEM studies suggest
that the fractal dimension of the resultant clusters is
somewhat larger than that measured for the rapid

FIG. 3. Logarithmic plot sho~ing the scaling of the ag-
gregation rate with colloid concentration, normalized to
the initial concentration of 1.7&&10'2/cm3. The straight
line is a least-squares fit to the data and has a slope of
0.56.

aggregation considered here. Under the conditions
of slow aggregation, many collision attempts are re-
quired before the clusters stick, and the aggregation
rate is no longer limited by diffusion. A more de-
tailed description of this realm will be presented
elsewhere. '9

Although the autocorrelation functions are highly
nonexponential, they retain an identical shape at all

times when scaled with the delay time. This re-
flects the fact that each moment of the distribution
function is growing at the same rate and is direct
evidence that N(M) exhibits a scaling behavior. In
general, we expect9'o N(M) —M ', with a faster
cutoff above some characteristic mass, M„whose
value increases with time. The exponent, v, is
thought to depend on the scaling of D with M. If
the scattering were dominated by a larger number
of more weakly scattering small clusters, there
would be no effective length scale in the distribu-
tion' and Ei —q . Thus the observed q depen-
dence means that the effective length scale is set by
M„and Eq. (2) requires r & 2 —I/df for the in-
tegral to depend on M, . This sets an upper limit of—1.4 on the value of ~, which is consistent with
the value obtained by use of the Smoluchowski
equations.

The success of this simple model in accounting
for our results suggests that a mean-field approach
to the dynamics, as embodied by the Smoluchowski
equations, is adequate. The essential addition that
we make is the inclusion of the explicit dependence
on the fractal structure of the resultant clusters.
The Smoluchowski equations cannot account for
the fractal structure of the aggregates, yet it plays a
pivotal role in determining the dynamics of the ag-
gregation. Two recent theoretical treatments at-
tempt to account for the fractal structure in the ag-
gregation process. Kolb et at. ' " use a mean-field
approach and their results reduce to ours if dif-
fusive motion of the clusters, with D —R, is as-
sumed. In contrast, Viscek and Family use numer-
ical simulations in 2 dimensions to find a scaling
behavior that is quite different from the mean-field
prediction. However, they start with considerably
larger initial concentrations than we use in our ex-
periments and use a different scaling of D, which
may account for this discrepancy. The experimen-
tal results reported here can now serve as a physical
test of the validity of any theoretical treatment.

The results reported in this Letter illustrate the
crucial relationship between the dynamics and the
static structure that is inherent in kinetic growth
processes. The fractal nature of the clusters directly
affects the scaling of their size with both time
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and concentration, providing another experimental
measure of df. Finally, our results suggest that
changes in the short-range interactions between the
particles, which can drastically alter the dynamics of
the aggregation, may also cause changes in the
long-range fractal structures that result. These im-

portant effects have yet to be fully investigated.
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