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A scaling theory is developed for aggregation by means of kinetic clustering of clusters. A
global picture of static and dynamic critical properties emerges, whereby the dynamic critical
exponent can be related to the fractal dimension. Furthermore, the growth process is de-
scribed in terms of a purely kinetic model. The scaling predictions agree well with numerical
results.
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Aggregation phenomena occur in many different
experimental situations. ' The best studied model
describing such growth processes is diffusive parti-
cle aggregation' which has been investigated nu-
merically' " and with mean-field arguments. '

Furthermore, time-dependent properties were stud-
ied in a continuum formulation. ' ' Here, I wish
to study aggregation by kinetic clustering of clus-
ters. ' '8 This is a simple model for irreversible
cluster growth which applies to two physical situa-
tions: flocculation and kinetically induced gelation.
In both cases, the random growth process leads to
large ramified structures. Flocculation corresponds
to the limit of low cluster concentration and gela-
tion to the limit of high cluster concentration (to be
defined precisely below). The flocculation limit has
been investigated numerically to determine the
fractal dimension D of individual clusters' ' and
gelation will be considered elsewhere. ' In the
present calculation, I explore the assumption that
the whole system of diffusing clusters is scale in-
variant in the flocculation region. As a conse-
quence, time-dependent properties and the mass
distribution of the clusters can be described in
terms of scaling. The static and dynamic exponents
then are related to each other. The arguments used
to obtain this result also suggest that a purely kinet-
ic approach in terms of the Smoluchowski equation
with appropriately chosen kernel should describe
this process correctly. Direct simulations analyzed
in terms of scaling variables are in good agreement
with these theoretical predictions.

The precise definition of clustering of clusters is
as follows: No particles (considered to be clusters
of mass m = 1) are randomly distributed on a pe-
riodic d-dimensional hypercubic lattice of volume
VO=Ld. No two clusters can occupy the same site.
They move independently of each other in a ran-
dom-walk fashion. The velocity v of a diffusing
cluster of mass m is

u(m) = m, (1)

where the exponent o. can be adjusted to suit the
experimental situation of interest. This motion is
simulated on the lattice by randomly picking a clus-
ter and moving it with a probability proportional to
u(m) by one lattice spacing in one of the 2d possi-
ble directions (also chosen at random). Whenever
two (or more) clusters touch each other, i.e., when
they are nearest neighbors on the lattice, they stick
together permanently and thus form a new, larger
cluster with a mass equal to the sum of the masses
of the constituent clusters. This new cluster also
diffuses according to Eq. (1), along with the other
clusters in the system. The sticking rule makes this
growth process completely irreversible: The num-
ber of clusters N steadily decreases and, corre-
spondingly, the average mass m = No/N increases.

Simulations of this growth model show that at
any given moment the clusters all have about the
same size; thus small clusters are formed from sin-
gle particles first, then larger clusters are generated
from smaller ones, etc. Hence the name kinetic
clustering of clusters. The different stages of the
growth are shown in Fig. 1 of Ref. 18. Large clus-
ters of mass m are very ramified and can be charac-
terized by a radius R —m', where D is their frac-
tal dimension. A useful quantity for this growth
process is the cluster density (quantities with a bar
denote averages over all the clusters in the system)

=N/V= m'"- " (2)

where V= Vo/R" is the volume measured in units
of the cluster radius R and po= Np/Vo is the initial
density. p defines two interesting regimes for a
scaling analysis: For p « 1 the distance l between
clusters is much larger than R (flocculation) while
for p = 1 the two lengths are comparable (gelation).
It is easy to understand why the two situations have
different properties. For p « 1 the clusters travel
a distance much larger than l before they meet each
other (d ))2), and hence the correlation between
them can be neglected. For p = 1, however, neigh-
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boring clusters are strongly correlated. From Eq.
(2) it is clear that there is always a crossover to the
compact regime, no matter how small po (D & d,

L ~). This picture is supported by the numeri-
cal results, which give different exponents for floc-
culation'7 ta (Dr) and gelation' (D,), D„&D,.

Here, only flocculation will be considered. For
the simulations this means that one has to choose
po sufficiently small and L large enough to satisfy
simultaneously 1 « N « No and p « 1. The
results in two dimensions show that Df does not-
to within numerical accuracy —depend on o. & 0. I
have extended the simulations to higher dimen-
sions obtaining Df ——1.72+0.10, 2.02+0.10, 2.30
+0.15, and 2.60+0.15 for d =3, 4, 5, and 6.

Again, Df appears insensitive to the values of
o. & 0. The exponent has been extracted from the
radius of gyration R (m). The same answer was ob-
tained when analyzing R (t) vs m (r) (average over
all clusters at fixed times) or R (m) vs m (average
over all clusters of mass m, no matter at what time
they are grown). The results also agree with those
of a simplified hierarchical version of the model.
Typically, an average over twenty independent trials
was taken with No= 512, 1024, and 2048 at a con-
centration po & 0.01.

Now I will explore a scaling hypothesis for the
entire system. It postulates that the whole growth
process is invariant, if length, mass, and time are
rescaled simultaneously. Suppose that the cluster
radius is changed by a factor b. Then mass must be
changed by b and time by b' where z is the dy-
namic critical exponent. z will now be calculated.
The (physical) time is defined such that during the
interval At each cluster moves by a distance vent

(the Monte Carlo time tM, which appears naturally
in the simulations, is measured in units where one
randomly chosen cluster moves by vhtM during
brM, thus ht~=Nht). Let us calculate the time
until each cluster has paired up (m 2m,
b=2tiD). The motion of the clusters shall be
described on a lattice with lattice spacing R. The
time it takes to move the clusters by one such lat-
tice spacing is R /u. As the density of clusters on
this lattice is p, it takes 1/p steps to pair up. Hence
the average time between collisions is

~ 21 —1 —a —(d —2)/D ~ D (1 —a) —(d —2)R /pn —m

Scale invariance (t —R', t~ —R' D) determines
z =D(1—o. ) —(d —2), dependent on the fractal
dimension. Note that this derivation neglects clus-
ter correlations and assumes that all the clusters
have the same size. The mass then depends on

time as2'

$D/z $D/[D (1—n) —(d —2) ]
J

(,)
N(r) m

m (r) m (r)
(4)

whereby the time dependence enters solely through
m(t) From .the definition of N and m, it follows
that fdxp(x) = fdxxp(x) =1. The moments of
N (m, t) then can be expressed in terms of m. 23

The function p (x) has been calculated in the nu-
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FIG. 1. Number of clusters N = No/m as a function of
(Monte Carlo) time tM (log-log plot). In the intermedi-
ate region N ) 8, rn ) 5 there is scaling. To the left
0 =2, o. = —1, —2, No=512, and L =128; to the right
d = 3, 0 = —1, —2, No = 1000, and L = 50. For compar-
ison, the straight lines indicate the exponent derived
from the scaling argument [Eq. (3), with D values given
in the text for d ~ 3]. The inset shows semilogarithmic
plot for d = 2, n = 0, No= 1024, L = 128.

(3)D(1 —u) ) d —2,

and higher moments scale accordingly (in terms of
r~, m —r ~l ~+ i Do+d —2&0)

The mass m(t) has been calculated from the
simulations for different values of o. and d. In Fig.
1, I vs tM is plotted logarithmically along with the
slope expected from Eq. (3) for d=2, 3 and o.
= —1, —2. The agreement is good. For d =2, a
=0 (inset), m (tM) can be fitted better by an ex-
ponential than by a power law.

Another consequence of the scaling postulate is a
scaling form for the cluster size distribution. The
number of clusters N(m, t) of mass m at time t can
be expressed in terms of a scaling function p (x),
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merical experiments. For 1 « N « N, it is in-
variant, confirming the scaling Ansatz. In Fig. 2
results are shown for d = 2, 4 and o. «0. For d = 2,
u = —1, —2 and for d =4, u = —3, p(x) peaks at a
finite value of x whereas for d = 2, o. = 0 it peaks at
x =0. Note that the points for d =2, o. = —2 and

d = 4, (z = —3 give approximately the same p (x).
The principal assumption made to calculate the

dynamic exponent is that the clusters are not corre-
lated in space. This is also the starting point for the
Smoluchowski-equation approach to cluster forma-
tion. Suppose that we try to describe flocculation
by the following equation for N (m, r) 24:

(6)

NadN/dt = —, X m' m""N(m')N(m") —m N(m) gm'"N(m'),
m'+m"=m m'

where the exponent co shall contain all the geometrical and kinetic information. Using the scaling form, Eq.
(4), for N(m, t) one finds that m —1/N —t'i(t 2 ). Comparison with Eq. (3) gives

2o) = a + (d —2)/D.
From Eq. (5) an equation for p (x) can be obtained25:

m' dp(x)(dh= Ip(x)+ —,'x pd( )x/ dx)y+ —,f dyy p(y)(x —y) p(x —y) —x p(x)l,

I„= dxx"p x .

The desired scaling function p (x) is the stationary
solution (t ~) of this equation for the initial
condition p (x, t = 0) = 8 (x —1). Expansion of Eq.
(7) for small and for large x indicates that p van-
ishes faster than any power for x 0 and decays
exponentially as x ~, for co & 0. For co=0,
p (x) = e ". I have solved for p (x, t ~ ) numeri-
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FIG. 2. Scaling function p (x) of the cluster size distri-
bution [Eq. (4)). The points are results from the simula-
tions in the scaling region. The curves are the numerical
solutions of the kinetic equations with 0) corresponding
to the values of n and d simulated [Eq. (6)]. The sym-
bols are as follows: crosses, d = 2, o. = 0, %0= 1024,
L = 128 (cu = 0, dotted curve); open circles, d = 2,
n= —1, No 1024, L = 128 ((0= —0.5 ——dashed curve);
dots, d = 2, 0. = —2, ND= 1024, L = 128, and plusses,
d =4, u= —3, N =1000, L =30 (both 0) = —1, solid
curve). The kinetic theory fits the data quite well.

(7)

cally for the values of cu corresponding to the values
of d and 0/ used in Fig. 2 and find agreement be-
tween the kinetic approach and the flocculation ex-
periments, except for co -=0 and x =0. Note that

p (x) should agree for d = 2, a = —2 and d = 4,
u= —3 as a) calculated from Eq. (6) is the same.
Another test for the kinetic description to floccula-
tion is the behavior of p(x) for small x. Direct
simulations and the kinetic approach agree that
p(x 0) vanishes rapidly for a) ( 0 and becomes
large when cu & 0.

Finally let me sketch how the proposed scaling
provides a starting point for a qualitative description
of this model. In contrast to particle-to-cluster ag-
gregation, where the particle and the cluster play
different roles in the growth process, cluster-to-
cluster aggregation is democratically organized, that
is, all the clusters participate in the growth process
in the same way. Thus it is reasonable to study how
two clusters of the same size (both with m =m andR:—R ) aggregate. When they coalesce, they pen-
etrate each other (on average) a distance (. As
scaling postulates that there is a single characteristic
length, g has to be proportional to R. Qualitatively

( results from balancing the repulsive forces due to
volume exclusion of the clusters and the attractive
diffusive forces. The density (~ I' i ) within
the clusters decreases with increasing dimension d,
and for sufficiently high dimension the clusters in-
terpenetrate freely. This is exactly like the self-
avoiding walk, which reduces to the random walk in
high dimensions. The model for flocculation in
high dimensions can be defined as follows: Two
clusters of mass m

&
and m2 coalesce into a cluster

of mass m ~+ m2 by forming, with the same proba-
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bility, a rigid bond between any particle of the first
cluster with any particle of the second cluster. As
the excluded-volume effects can be neglected for
large d, the properties of this model do not depend
on d. Different versions of this model can be con-
ceived: While in the hierarchical variant always two
clusters of the same mass stick together, 28 in a
more realistic version growth can be governed by a
kernel as in Eq. (5). The same model can also be
studied27 below the upper critical dimension (analo-
gous to the random walk) by letting the particles oc-
cupy the same sites.

I have benefitted from discussions with R. Ball,
R. Botet, R. Jullien, and H. Herrmann and the sup-
port of the Deutsche Forschungsgemeinschaft. La-
boratoire de Physique des Solides is a laboratoire as-
socie au Centre National de la Recherche Scientif-
ique.
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