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Fast Neutral-Beam Photofragment Spectroscopy of H2 c 3II„
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A time- and position-sensitive detector has been used for the first determination of the
momentum distribution of correlated photofragments. A fast beam of H2 c II„ is observed
to undergo three types of photodissociation: (1) radiative dissociation of individual rovibra-
tional levels; (2) predissociation by barrier tunneling of quasibound levels, for the first time
observed in a neutral system with fragment energy analysis; and (3) direct photodissociation,
which has been rotationally resolved for the first time.

PACS numbers: 33.80.6j, 35.80.+s

We report a novel approach to the study of excit-
ed states of neutral molecules by photofragment
spectroscopy. A fast beam of excited neutral
molecules formed by near-resonant charge ex-
change is photodissociated with a tunable dye laser
in a crossed-beam configuration and the resulting
photofragments are detected with high efficiency
with a time- and position-sensitive detector, '
which allows measurement of the momentum dis-
tribution of fragment pairs arising from a single dis-
sociation event.

A schematic diagram of the experimental ar-
rangement is shown in Fig. 1. A velocity-analyzed
beam of H2+, formed by electron-impact ionization
of H2 and accelerated to 7.5 keV, is directed
through an alkali-metal vapor oven of 10 mm
length. Near-resonant charge exchange of H2+ in
alkali metals is known to populate strongly the H2
c II„state. While the c H+ component decays
rapidly by predissociation through the b sX+ state,
the levels belonging to c II„are long lived (r—0.1-1 ms). A pair of deflection plates allows
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FIG, 1. Schematic diagram of the neutral-beam photofragment spectrometer with time- and position-sensitive detec-
tor. In the current experiments the laser polarization was set perpendicular to the plane of the neutral beam and laser
beam.
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separation of the remaining H2+ ions from the fast
neutral beam. The neutral beam then enters a
UHV chamber (pressure —4&& 10 9 Torr) through
a 0.5-mm-diam aperture, is crossed with the intra-
cavity beam of a cw dye-laser, and reaches a V-
shaped beam flag which shadows the inactive por-
tion of the position-sensitive detector which is lo-
cated 154 cm from the photon interaction region.

The multichannel plate detector' consists of two

opposing sectors of opening angle 20' which allow
separate detection of the two photofragments pro-
duced in a single photodissociation event. The
detector and its associated electronics permit the
measurement of the spatial separation, R, of the
two fragments at the channel-plate surface with a
precision of typically 70 p, m by measurement of the
center of charge of each electron cloud emitted by
the channel plates with a multianode system and
the FOM charge division method. The flight-time
difference between these two fragments can be
measured with a precision of 500 ps with the fast
current pulse induced in the supply lines to the out-
put face of the channel plates when a particle is
detected. The spatial separation, R, that can be
measured with the current device lies between 1

and 4 cm. At 7.5-keV parent-beam energy, this

separation corresponds to c.m. energy releases in
the range from 80 meV to 1.25 eV when dissocia-
tion occurs perpendicular to the parent-beam direc-
tion.

By tuning the dye laser and monitoring the coin-
cidence count rate we obtain absorption spectra of
transitions in the neutral beam which lead to photo-
dissociation. Figure 2 shows an example of an ab-
sorption spectrum obtained with rhodamine 66
dye. For the strongest transitions, the coincidence
counting rate reaches typically 104 fragment pairs/s
with a primary beam current of H2+ of 10 ' A and
a pressure in the charge-exchange cell of 10 Torr,
for an intracavity laser power of 20 %. The line-
width of the transitions observed in Fig. 2 is limited
by the linewidth of the multimode dye laser ( —1

cm ').
Space- and time-resolved spectra of photofrag-

rnent pairs were recorded with the dye laser set to a
fixed wavelength. In the current paper we restrict
our discussion to spatial spectra which are obtained
for fragments with flight-time differences & 2 ns.
Fragments with such small flight-time differences
are formed when dissociation occurs very nearly
perpendicular to the molecular-beam axis. Under
these conditions the c.m. separation energy, W, is
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FIG. 2. Photodissociation spectrum of H2 c H„.
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related to the measured spatial separation of the
photofragments, R, by the equation

where Eo is the parent-beam energy and L is the
distance from the photon interaction region to the
detector.

In Fig. 3 we show spatial spectra which illustrate
three different mechanisms of photodissociation
that contribute to the spectrum in Fig. 2. Their ori-

gin may be understood with the help of Fig. 4 which
illustrates three photodissociation processes of H2
c II„ through excitation of the i IIg state.

(1) Bound bound f-ree ph-otodissociation The.—ex-
citation of bound triplet gerade states from c II„
gives rise to radiation into the continuum of the
b XU+ state. It is evident from Fig. 4 that excitation
of a single rovibrational level in the i Hg state will

give rise to a continuum distribution of photofrag-
ment energies which reflects the overlap of the
bound-state vibrational wave function with the con-
tinuum wave function of the b 3X+ state.

A number of transitions observed in Fig. 2 were
assigned to such bound-bound-free transitions be-
longing to the i II c3II„and g Xg+ c II„sys-
tems. Figure 3(a) shows an example of the con-
tinuous fragment-energy distribution which is ob-
tained when we pump the R1 line of the i c tran-
sition in the (3,3) band. The measured energy dis-

tribution represents the lower-energy portion of the
total distribution produced, fragments with separa-
tion energies ) 1.25 eV falling outside the current
detection geometry and time window. The small
structure which appears in the continuum energy
distribution in Fig. 3(a) arises from an underlying
bound-free photodissociation which is disucssed
below.

(2) Bound quasibound pho-todissociation Dissoci-. —
ation of a single quasibound level produces frag-
ments with discrete separation energy, revealing the
absolute location of the quasibound level with

respect to the dissociation limit. Several transitions
to quasibound levels appear in the absorption spec-
trum in Fig. 2, which we have assigned to the (4,4)
band of the i c system. To our knowledge these
transitions have not been recorded previously. Fig-
ure 3(b) shows as an example the kinetic-energy
spectrum of photofragments produced by pumping
the Rl line of the (4,4) band ( W —160 meV).
The potential-energy curve given by Kolos and
Rychlewski supports six vibrational levels, two of
which lie above the asymptotic dissociation limit
H(ls) +H(2p). The levels v=4 and 5 are thus
quasibound. We have calculated the tunneling life-
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time to be 4.4 ns for v=4, N=1, and shorter for
the energetically higher levels. By comparison, the
purely radiative lifetime of the i IIg state is of the
order of 15 ns. 5 Hence tunneling to the first excit-
ed dissociation limit is the dominant decay channel
of the quasibound levels.
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FIG. 3. Photofragment kinetic-energy spectra ob-
served in photodissociation of H2 c 'H„.
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FIG. 4. Photodissociation channels from H2 c II„: 1,
bound-bound-free; 2, bound-quasibound; and 3, bound
free.

(3) Bound free photodissociation Und. —erlying the
discrete spectrum shown in Fig. 2 is a continuous
background of laser-induced dissociation which ar-
ises from bound-free photodissociation. At a fixed
laser wavelength, bound-free transitions will pro-
duce photofragments at energies 8 = hv —D, z,
where D„z is the dissociation energy of the rovi-
brational level with quantum numbers v, N from
which the optical absorption occurs. Bound-free
photodissociation at a fixed wavlength leads to a
fragment energy distribution that reflects directly
the lower-state rotational and vibrational spacings.
Because of the very high energy resolution of the
time- and position-sensitive detector we were able
to resolve this distribution experimentally. Figure
3(c) shows such an energy distribution obtained at a
fixed frequency near 16480 cm ', where no notice-
able peak occurs in the absorption spectrum. As in-
dicated in this figure, bound-free transitions are ob-
served from the vibrational levels v" = 5, 6, 7, and
8 of the c II„state, with individual rotational levels
being resolved in the kinetic-energy spectrum. The
intensity distribution over the individual rovibra-
tional bound-free transitions reflects the population

in the lower-state levels multiplied by the v- and
N-dependent photodissociation cross section.

We have shown that a time- and position-
sensitive detector can be used in photofragment
spectroscopy in a fast neutral beam, allowing high-
resolution absorption spectroscopy and translational
energy spectroscopy on electronic molecular states
that are coupled to the continuum. With this de-
vice we were able to investigate the bound, quasi-
bound, and continuum vibrational levels of the
i II~ state of H2 in the vicinity of its dissociation
limit H(ls) + H(2p).
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