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Q.-Particle D -State Components from (d, a) Analyzing Powers
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A D-state component in the o. particle has been extracted from angular distributions of
tensor analyzing powers for '9Y(d, no) "Sr at 9, 12, and 16 MeV. Exact finite-range
distorted-wave Born-appproximation analyses including the effects of L and J mixing have
been performed. The D-state parameter D2, closely related to the asymptotic D- to S-state
ratio for d-d relative motion in the o. particle, requires a value of D2 ———0.3 + 0.1 fm in or-
der to fit the tensor analyzing power data.

PACS numbers: 21.40.+d, 24.70.+s, 25.45.Jj, 27.10.+h

Nonspherical wave-function components of very
light nuclei are sensitive to noncentral interactions
in the nucleon-nucleon force. Such components of
the a-particle ground state, breaking its high sym-
metry under spin and isospin exchange, are of great
interest. ' This Letter describes the first deter-
mination of the D-state admixture in the simplest
configuration of the o. particie that has a relative or-
bital angular momentum L' ) 0, namely, a bound
state of two deuteron clusters. Such a d-d config-
uration can form an n-particle ground state either in
an S state with L' = 0 and the d spins antiparallel, or
in a D state with L'=2 and spins parallel to each
other and antiparallel to L'. This D-state com-
ponent can be revealed by a (d, o. ) reaction initiated
by a tensor-polarized deuteron beam.

The diagonal elements of a tensor analyzing
power (TAP) are defined by A;;=2(o-; op)/(rp,
i =x,y, z, where a-; is the cross section measured
with the incident deuteron spin aligned in the
i direction and o-0 is the spin-averaged cross section.
We now give an intuitive description of the d-

pickup reaction that clarifies why it is sensitive to
D-state effects. Consider the reaction as taking
place peripherally so that the orbital angular
momentum transfer L= r xq is perpendicular to
the reaction plane, as shown in Fig. 1. Classically,
for a pure S state in the emerging n particle, a
spin-up (spin along y axis) incident d will pick up a
spin-down d from the target. For total angular
momentum transfer between target and residual
nuclei of J =L —1, only region Ri will contribute
to 0 y since L is up for that hemisphere, whereas
only region R2 will contribute for J =L +1. The
presence of a D-state component allows the alter-
nate regions to contribute to o-y, so that A» should

generally increase as the D-state component in-

creases. This intuitive description agrees with the
full quantal calculations described below and shown
in Figs. 2 and 3. These results are also sensitive to
interference between S and D components, thus
determining their relative sign.

The reaction studied was s9Y(d, na) Sr (spin and

parity of —,
' ) at 9, 12, and 16 Mev. The data were

taken at Triangle Universities Nuclear Laboratory
with use of a deuteron beam from a Lamb-shift
source that had both vector and tensor polarization
components. The beam was incident upon a

260-p, g/cm -thick Y foil, and 300-p, m-thick sol-
id-state detectors detected the outgoing n particles.

FIG. 1. Classical description of a (d, a) reaction with
incident deuteron spin along the y axis (out of page).
Pickup of a d occurs at r in both regions R l and R2,
whose boundary is along the direction of the momentum
transfer q and passes through the nuclear center. In this
figure the o. particle has been formed with d-d in an S
state.
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A He polarimeter was used to monitor the beam
polarization moments during each eight-step mea-
surement~ that determined do./d f1, the vector
analyzing power A~, and the TAP components A~
and A~~. At 12 and 16 MeV the off-diagonal TAP
A„, was also measured.

The target nucleus Y is particularly good for
studying D-state effects because the simple shell-
model configurations of the Y and 8 Sr ground
states allow the admixture of various angular
momentum transfers to be easily calculated. The

Y ground-state proton component is well
described as 7r(2p, i2) coupled to a Sr core. The
2p&i2 protons are expected to predominate in pickup
since nuclides with one less proton than Y, such
as Sr, are found to have nearly full ( ~ 90%) 1fr~2
and 2py2 shells and nearly empty (~10%) 2ptiq
shells. For the neutron orbital in Y there is high
probability that w(lg&g) is involved, since spectro-
scopic factors near unity have been determined for
g9/2 transfers in neutron pickup reactions from
X =50 nuclei. Thus, the s9Y(d, no)s7Sr reaction is
predominantly populated by pickup of 7r(2p&i2) and

v(lg9/2) from Y, which results in allowable (L,J)
transfers of (3,4), (5,4), and (5,5). These proton
and neutron configurations allow the appropriate

parity change and spin change of 4 in the (d, no)
reaction, and the (L,J)-mixing amplitudes can be
calculated by using 9-j and Talmi-Moshinsky coeffi-
cients. The calculated (L,J) mixing amplitudes,
normalized to unit probability, are 0.59 for (3,4),
0.12 for (5,4), and 0.79 for (5,5).

The differential-cross-section and analyzing-pow-
er data shown in Figs. 2 and 3 were analyzed by ex-
act finite-range distorted-wave Born-approximation
(DWBA) calculations with use of the code
PTOLEMY and with the assumption of deuteron-
cluster transfer. Deuteron internal D-state com-
ponents are expected to have relatively negligible
effects on (d, n) reactions for the same reasons as
in (d, t) and (d, 'He) reactions. ' The d-d relative
motion in the o. particle was described by a Woods-
Saxon potential consistent with their separation en-

ergy and with the o, -particle rms radius. " The dis-
torted waves were generated from optical potentials
determined by measuring and fitting 9Y(d, d)s9Y

angular distributions of da. /d 0 and A» at 12 MeV,
and 19.5-MeV cross-section angular distributions
for s7Sr(n, n)s7Sr. For the deuterons, the global
potential of Daehnick, Childs, and Vrcelj' was ad-

justed to fit the elastic-scattering data. Since the o.

particles were near the Coulomb barrier, their cross
section was rather structureless. Therefore, the a-
particle potentials obtained were adjusted to also fit
the vector analyzing power for the s9Y(d, ao)s7Sr
transition. These potentials also led to good agree-
ment of the DWBA calculations with the
differential-cross-section and vector-analyzing-
power data for transitions to the first two excited
states in Sr.

Figure 2 shows the analyzing-power data at 12
MeV with calculations for the o. particle in a pure S
state, or for the D state included. Both the cross
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FIG. 2. Analyzing-power data for the reaction
s9Y(d, no)s7Sr at 12 MeV with curves from exact finite-
range DWBA calculations. The dashed curves ignore the
D state of the n particle. The solid curves correspond to
D2= —0.3 fm2.
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FIG. 3. Variations in the D-state admixture calculated
for 3 at 12 and 16 MeV, with the same optical poten-
tials and (L,J)-mixing amplitudes as in Fig. 2. The shad-
ed regions correspond to D2 in the range —0,2 to —0.4
fm'



VOLUME 53, NUMBER 17 PHYSICAL REVIEW LETTERS 22 OCTOBER 1984

section (which has a structureless angular distribu-
tion) and the vector analyzing power are well
described by the present calculations, but they are
insensitive to the D state. In contrast, the TAP cal-
culations, especially for A„„show large D-state ef-
fects. Clearly, all the TAP are better described by
the calculation with the D state included. Similarly,
good results were obtained for the 9- and 16-MeV
data by adjusting only the depths of the o. absorp-
tion potentials. The D-state value shown in Fig. 2

corresponds to a D-state admixture with D2= —0.3
fm, where D2, defined by Knutson and Haeberli, '

is approximately proportional to the asymptotic D-
to S-state ratio for d-d relative motion in the o, par-
ticle. Assuming. Gaussian wave functions for nu-
cleon motions in the o. particle, we estimate a corre-
sponding value for the D-state probability in the o.

particle of PD —-7%. This is in reasonable agree-
ment with recent calculations of the structure of the
o. particle with noncentral forces, ' which yield PD
= 5.4% in Goldhammer's calculation and the range
8% ~Pa ~ 13lo in Ballot's.

Extensive tests were made in which the optical
potentials and the (L,J) mixing were varied. The
shifts in A~ and Ayy and the large effect in 3„, in-
troduced by the D state could not be generated by
any reasonable change in the optical potentials.
Similarly, the D-state effects could not be plausibly
obtained by adjusting the (L,J)-mixing amplitudes.
By changing the sign and increasing the magnitude
of the (5,4) amplitude, it was possible to approxi-
mate the effects of the D state in 3 „although the
phase did not agree well with the data. However,
such changes in the (L,J) mixing significantly wor-
sened the agreement with the A~ and Ayy angular
distributions. These results emphasize the need to
consider a complete set of analyzing-power observ-
ables. The inability in the present work to trade off
D-state effects against those from mixing of angu-
lar momentum transfers contrasts with the results
obtained by Tostevin, "who found in a case having
L = 0 mixing with L = 2 that the effects of mixing
could be included in either the target or the projec-
tile bound states.

While it is convincing that significant D-state
component in the o, particle is needed, it is more
difficult to extract a precise value for the D-state
amplitude. As shown in Fig. 3, the most sensitive
TAP, A„„changes significantly only for relatively
large changes in the D-state amplitude, and some
of the TAP are better fitted by different D-state
amplitudes. From these and similar analyses, we
conclude that D2 ———0.3 + 0.1 fm .

The contribution of two-step processes to (d, o)

reactions has recently been estimated. '4 Two-step
processes are thought to become important if the
one-step transition is weak because of effects such
as momentum mismatch between the initial and fi-
nal channels or violation of isospin conservation.
For s9Y(d, no) s7Sr, the momentum-matching condi-
tion is well satisfied, as reflected in the substantial
cross sections, which range from 10 to 70 p, b/sr at
12 MeV. These are much larger than estimates for
two-step contributions, which do not exceed a few
microbarns per steradian. ' Therefore, the effects
of two-step processes on our value for the D-state
amplitude are expected to be negligible compared to
the estimated 30% uncertainty.

What other ways can be used to investigate D-
state components in the o. particle? It has been sug-
gested" that the J dependence of (u, d) cross sec-
tions could be explained by D-state effects in the o.

particle with D2= —0.20 fm, but this explanation
has been questioned. ' Measurements of tensor
analyzing powers in d(d, y)u are currently under-
way at both low' and intermediate' energies.
Methods based on analyticity applied to d(d, d)d in
the channel-spin 2, L' = 2 configuration can, in
principle, be used, ' but the o.-particle pole is very
far from the physical region. The existence of n-
particle D-state components implies a finite intrin-
sic quadrupole moment of the o. particle, but this
moment could not be measured by conventional
Coulomb-excitation methods because the o. particle
has no bound excited states. Our results should
provide impetus to further experiments and to im-
proved understanding of the nucleon-nucleon in-
teraction, especially of noncentral components and
their effects in few-nucleon systems.
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