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Chiral Anomaly and Quantized Hall Effect
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Chiral anomaly in (2+1)-dimensional fermion theory coupled with an external elec-
tromagnetic field is studied. Its connection with the quantized Hall effect is pointed out.
Hall conductivity is quantized and agrees with the experimental value.
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In a recent paper, ' it is pointed out that chiral
anomaly is due to the appearance of a path-
dependent phase factor in the Euclidean partition
function and a path-dependent term in the loga-
rithm of the partition function, the free energy.
The path-dependent phase factor is produced by a
zero-eigenvalue solution of the Euclidean Dirac
equation. Since the zero eigenvalue of the Dirac
equation makes the partition function vanish, and
the free energy become infinity, this is a singular
point of the partition function. The path-dependent
phase factor can be produced by the singularity but
not by the regular part, which is the ordinary part in
the Lagrangian. Hence there is no correction from
higher-order effects in the anomaly term.

Here we shall discuss the same anomaly in 2+1
dimensions. Actually the anomaly in 2+1 dimen-
sions has been obtained already, but it may be use-
ful to discuss it from a different point of view.

A consistenc condition for an external ma netic
fiel
whi

be
nal

remains constant in the large fermion mass limit,
and in the small mobility limit, and agrees with the
experimentally observed quantized Hall current.

We investigate a system described by

W =pyt'(iirri„+ eA„)Q—mQQ, (1)

in 2+1 dimensions. In these dimensions, y~ ma-
trices are 2& 2 and satisfy

(2)

in Minkowski (Euclidean) space. Here e„„~is a to-
tally antisymmetric tensor.

A peculiar property which has its origin in Eq. (2)
and will be used later can be seen in the quantity

g, a „Tr[tt„(x)yaP„(x)], where [tt „(x)}is a com-
plete set satisfying

2

p$„=i X yJ(iiBJt+ eAJ )$„=X„p„
)=1

(3)

g
d which couples with fermions and a current Not only is the calculation of Q„Tr[$„(x)ya
ch is induced by an external electric field shall XP„(x)]itself important, but also similar calcula-
obtained. The induced current which is orthogo- tions shall be needed several times in this paper,
to the electric field is shown to exist. Its value and so I show it here. The method is due to

Fujikawa

X Tr[p„(x)yap„(x)]= lim XTr[p„(x)yaexp( —Xz/M2)p„(x)]
all n n

= lim XTr[@„(x)yaexp(—8'/M')tt „(x)]
M~oo

„

lim X e t~Trya exp( —H /M2) e'~
M~oo k

lim ge t~Tryaexp( —M (D„D"+ —,
' [y",y"]I'„„)]et~

M~oo k

= (2~a)-'exp(rt2). (4)
In the above equation, the regularization mass Mwas introduced in the intermediate step. The final result is,
however, independent of Mand this term exists even in the finite-Mcase. The zero-eigenvalue solution of
Eq. (3) (X=O)6 contributes to this term. In fact, fd x Tr[tt„"(x)yoP„(x)]is nonzero only for the zero-
eigenvalue solution, $o(x), since yo anticommutes with P

We now obtain one consistency condition for a magnetic flux, based on a representation of the partition
function Z, and an induced current, based on a different representation.

The Green's function in Euclidean space is calculated from

Z= dpFexp —h ' Wd'x = dpFexp —t ' dxo b„hn~a~+ i~~+m b a„ (5)
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where

dp, = Qda„(x ) db (xo), [t/(xo, x) = X„a„(xo)(t)„'(x),[T/(»o, x) = X„b„(xo)(t)„'(x),
2

~nm d x n YO m x ~ p e~0+ p ~~~j+ e~j n I~n+1984.j=l
The external vector fields A„areassumed to be time independent in this part.

Let us study the following transformation:

fdeer)(xxe) e' *
'fdxerh(xxe). Jdeer)(vxe) fdxer[r(xxe)e'

The measure dp, F is transformed as

/ada„(x[)) db~(xo) ada„'db' =detC ada„db~,

where C„~= ((t)„'e '$~). Following Fujikawa, we calculate detC2 for infinitesimal 0 as

det( t= exp trte( t= exp[/„2i(d„'iexerh„)[= exp'[2i(e/h) fd'x F tp(x) [.

(6)

Hence, for finite 0(x) we have

ndetCt= exp[2i (e/h) fdtx Ftth (x) ]. (1O)

From the transformation Eq. (7), the field Q is transformed back to the original field if 0(x) is equal to 22r.
Thus the physical requirement that Z is single valued7 leads to

exp(2if d 2 (ex/hr)rF [= 1,rtJd x Frt= —,
'

(h/e) xieteger.

5Z = Z Tr[(8 —m) 'y„5A/'],

when A„is changed adiabatically by 6A„.Thus

5 lnZ =Tr[(8—m) 'y„5A"1=Tr((8+ I ) [(8—m) (8+ rn) ] 'y„5&"}
0

2 2
dSTr +m e ~ ~

y SATE" = e 4mb e~y~F y5A +m 0 F 5A. 13

In the last step of the above equation, use has been made of a method similar to Eq. (4). The first term cor-
responds to the topological term. The coefficient is uniquely determined.

From Eq. (13), we have an induced current:

2 1 eg'"'F„+ O(F') = I'o + — O(—F') (j & i). (14)
4 f P m2 Q

0j ~2

(12)

51nZ
SA;

Now we apply the previous argument to planar electrons under strong magnetic field. The Hall effect will
be studied.

The electron's energy is small in solid state physics and the relativistic effect is negligible. The
Schrodinger equation may be used without any serious problems. However, in some situations two states are
involved in the system's time development and a momentum-dependent correlation between them exists. I
would like to propose the use of the Dirac equation in this case.

Let us assume that there are only two states, which are represented by fields [}/&(x) and [F/2(x) and have
masses mq and m2. Furthermore, mobility is assumed to exist. Although the physical reason for the mobili-
ty in two-dimensional systems has not been made clear, we can study its physical consequences and obtain a
universal property about Hall conductivity based on this assumption. Even in the limit of vanishing mobility
the result regarding Hall conductivity is unchanged.

The Hamiltonian density which describes two electron states is assumed to be8

P = mt[i[) (x)Q) (x) + m2$2 (x)Q2 (x) + (c„[l/)ii28,$2+ catt/)ii) By[t/2+ H c }. . . (15)

1616

This is a flux quantization condition.
Next we study the change of action which is caused by an adiabatic change of 3„.It is convenient to calcu-

late in Euchdean space. Since Z is equal to the determinant of E —m, its small change is given by
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It is assumed that their momenta are small and only linear terms with respect to momentum are included.
The coefficients c; are complex constants, which may be very small.

It is convenient to start from the Lagrangian when we investigate the electromagnetic properties of the sys-
tem. The Lagrangian density by which the previous Hamiltonian is derived is

~ =y[yo(iego+ ea) —djy'(it'd, ) —m]y, (i6)
where

r

(4$ $2)ya Q =, m = mt —m2, eo= —,
' (m)+ m2),

, 2,
'

Imc„—Rec„ 1

Imc —Rec ]' ya 0
t

0 1

Yl I
1 0

0 1

—1 0'

after a suitable phase convention is chosen. The coupling of p with an external electromagnetic field is
determined by the usual minimal coupling. Thus we have

L =P [ya(if t)o+ eAa+ eo) + d~y'(if r)&+ eA~) —m ]P.

In a situation where the two states are generated
by an external magnetic field special attention is
needed. A strong magnetic field in an orthogonal
direction to the planar electrons is known to lead to
the electrons splitting into many levels which are
confined spatially and are called Landau levels.
A vector potential ( ——,

'
(y —Y)0, ,' (x —X)0)—

= (A„,A~), which corresponds to a constant mag-
netic field, leads to the Landau-level center (X, Y)

for instance. When we study the response of the
system to an additional external change, we add the
additional term to the vector potential. Only these
terms should be put into Eq. (18) in order
to avoid double counting. More specifically, if a
time-independent small current is added to the sys-
tem, the response to it is studied by adding

(5Aa, 5At, 5A2) to the vector potential. Here 5A&

and 632 are connected with the current density
through

5 W/5A;= j;, (19)

where 6H' is the corresponding change of action.
We understand that the vector potential in Eq. (18)
means these potentials hereafter.

It would be reasonable to assume that only the
nearest-neighbor two levels among many levels are
involved in low-energy phenomena if all energy
levels are well separated and if the Fermi energy is
located in their gap region. This may occur under
strong magnetic field. Thus the phenomenon
which we are discussing may occur only under
strong magnetic field.

The effect of finite electron density is represent-
ed by inclusion of the chemical potential in the
Lagrangian. We do not need to change anything
except to redefine eo in Eq. (17).

The induced current density is seen from Eq.

(e2/h) && integer, (21)

when the conductivity in the direction parallel to
the current vanishes. The value calculated here
agrees with the experimentally observed value.

In the present argument the Q may be any bound
states, since we do not need any property of Q ex-
cept that they can move and have unit charge.
They do not need to be pure Landau levels, but
may be those states which are modified by phonon
interactions.

Laughlin" gave a general argument based on
gauge invariance. Ours may be a microscopic ex-
tension of Laughlin's argument, although there
seems to be a distinction between them.

Note added. —This is a revised version of Hok-
kaido University Report No. EPHOU 83 DEC 005.

(14). The first term is unchanged with the pres-
ence of the numerical constant d, in Eq. (18).5
Even in the limit of vanishing mobility (cj 0),
the value is unchanged. The second term, howev-
er, vanishes if c, vanishes. The localization of
charge carriers corresponds to the vanishing of c~.
Even in that limit, there is a current, with quantized
value, in the direction orthogonal to the electric
field. The current in the direction parallel to the
electric field vanishes in that limit.

If there are many levels below the Fermi energy,
a unit of quantized current from each gap region
contributes. Thus the total current density is given
by

j, = (e2/h)Foix integer (j W i). (20)

Recently, quantization of the Hall current was
measured by Klitzing, Dorda, and Pepper. ' The
observed Hall conductivity is
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The derivation of the induced current is slightly
changed. After completion of the present Letter I
became aware of papers which discuss similar to-
pics: Y. N. Srivastava and A. %idom, to be pub-
lished; M. H. Friedman et a1. , Phys, Rev. Lett. 52,
1587 (1984).

The author would like to thank Dr. H. Takayama
for an instruction about quantized Hall effect. He
also thanks Mr. O. Abe, T. Matsuyama, and H. Ta-
mura for reading the manuscript.
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