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Bound Magnetic Polarons in Antiferromagnetic Semiconductors
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We discuss properties of bound magnetic polarons in an antiferromagnetic semiconductor
placed in an external magnetic field. When the strength of the exchange coupling between
the electron spin and local moments is increased, there can be an abrupt transition between a
large and a small bound magnetic polaron. Associated with the bound state is a large fer-
romagnetic moment; our theory provides a quantitative account of magnetization data on
Eu Te.

PACS numbers: 75.10.Jm, 75.30.Cr

Magnetic semiconductors are insulators at zero

temperature; one of the atomic constituents carries
a localized spin S. An excess electron (in the con-
duction band) couples to the local moments via a

strong exchange interaction, typically ferromagnetic
in sign. If the electron is localized in a bound state
near a donor, it induces ferromagnetic order in the
near vicinity of the donor via this exchange, in-

creasing its binding energy in the process. This is a
bound magnetic polaron (BMP). The BMP has
been the subject of many theoretical studies in fer-
romagnetic semiconductors such as EuO and EuS. '

However, when the temperature T=O, the spins
are already fully aligned in these materials, and the
BMP reduces simply to a classical hydrogenic state
unaffected by the conduction-electron —local-mo-
ment exchange.

Quite to the contrary, in antiferromagnetic semi-
conductors, even at T=O, coupling of the donor
electron to the local moments strongly modifies the

I

BMP, as we shall see. This Letter discusses such
states, and points out that they are the origin of the
"ferromagnetic clusters" observed in EuTe.
Indeed, we obtain quite a nice account of the data
with the calculations reported below. Our interpre-
tation thus differs from that given earlier, which
views2 the ferromagnetic clusters as associated with
"ferrons, "which are electrons far from donor sites,
self-trapped in a potential well produced by fer-
romagnetic alignment of local moments induced by
the conduction-electron —local-moment exchange.
In work described elsewhere, we have reexamined
the theory of ferrons, and concluded that no such
entities exist, for parameters characteristic of EuTe.

We describe the antiferromagnetic semiconductor
as a continuum, characterized by the spin density
S( r ) = $t S;5( r —R;). With V, the volume of the
unit cell, nearest-neighbor antiferromagnetic ex-
change, and a Zeeman field parallel to the z axis,
the Hamiltonian of the host is

grr = —,'d V ggf d'r S( r ) S( r +g ) —grrgHrf d'r S( r ).

We ignore anisotropy here, so that the spins are in

the spin-flop state in the presence of the magnetic
field Ho.

In these materials, the conduction-electron band-
width 8 is large compared to the conduction-elec-
tron —local-moment exchange A. This has the fol-

lowing consequence. While each individual local-
ized spin has a nonzero transverse moment, this os-
cillates in sign as one moves from site to site, and
as the conduction electron hops rapidly through the
lattice, it averages over the transverse moments as-

sociated with the spin-flop state. Then it senses
only their z components, which for all local mo-
ments are positive and nonzero in this configura-
tion. The electron spin is thus directed along z, and

we have for its spin density s ( r ) =z~)it( r ) ~2/2,

with )lt ( r ) the spatial portion of its wave function.
The expectation value of the conduction-
electron —local-moment exchange is then

Vf= ——,'AV, d rS, r r . 2

We calculate the total energy of the system by ad-
ding to Eq. (1) (we treat the host spin density clas-
sically) the electron energy

Te+ Vsf Vd I BHO

where Vz = —(e2/e) fd r ~)it ( r ) i /r is the potential
energy provided by the donor site, and T,
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= + (f /2m) fd3r i'7P( r ) i is the kinetic energy.
Here m is the effective mass at the bottom of the
conduction band, and ~ is the dielectric constant of
the matrix.

We are assuming the adiabatic approximation (A
is much larger than the local-moment —local-mo-
ment exchange J), and that a host spin at r makes
the angle 0( r ) with the z direction. Minimization
of the total energy with respect to 0( r ) gives, with
z the number of nearest neighbors,

cose(r)= + ' iy(r)i',gpgHp A V,
(4)

an expression that is valid so long as the right-hand
side is less than unity. To obtain Eq. (4), we as-
sume that 8( r ) varies sufficiently slowly in space
so that the sum g~ cos8( r + 5) over the set of
neighbors nearest to the local moment at r may
be replaced by z cos0( r ). We are to replace the
right-hand side of this expression by unity [then
8 ( r ) = 0] when the right-hand side becomes
greater than 1. Then the strength of the local-
moment —conduction-electron exchange is suffi-
ciently large to fully polarize the core of the BMP;
we have a ferromagnetic core surrounded by a
"halo" within which the ferromagnetic moment of
the spin-flop state is enhanced.

When A is sufficiently small that the core never
saturates, one obtains a simple expression for the
energy AE of the BMP, relative to the bottom of
the conduction band:

AE= T ——, Vi —Vd
1

where
A2V

VI= d r r

(s)

(6)

Our task is now to find the function Q( r ) every-
where, with the BMP core unsaturated. We have
now mapped our problem onto one of the cases
considered by Emin and Holstein, 4 in their simple
but elegant analysis of a class of polaron problems
treated within the adiabatic approximation. Their
analysis, applied here, provides insight into the
problem. Replacing Q ( r ) by R zQ ( r /R ), and
letting T„VJ, and Vd be the relevant quantities cal-
culated for R = 1, we have

T, 1 VI Vd
b, E(R) =

R2 2 R3 R '

and assume for the moment that Q ( r ) produces a
minimum in AE(R) at R = 1. This leads to the re-
lation

Vd = T, + ( Tz —', VI Vd ) 'i2. — (8)

= Si (mzJaa/3 m V, )

The decrease in rp with increasing A can be limit-
ed by saturation of spin polarization within the core
of the BMP. If we require the core to just saturate
when ra=as/2, we find that this occurs when A
=A ', and

A,"= (1—Ho/H, ) zJSm'aa/ V„ (10)

with H, = 4zJS/gp s. This is the field which pulls
the spin-flop phase of the bulk material into a fully
aligned ferromagnetic state [set A = 0 and 0 ( r ) =0
in Eq. (4)]. For fixed J, A, ' —as while A, '
—aa. Hence for large aq, and Hp ((H, we have
A,(' )A, ', and so we hit the point where the
square root vanishes before the core saturates. In
the opposite limit A, ' (A, ', the core reaches sat-
uration first. For the two cases, one traces out the
following behavior:

(a) A, ' ) A, ' .—As 2 increases from 0 to 3,"',
ro decreases continuously from aa to aa/2. For
A )A, ', AE(R) no longer has a minimum at fi-
nite R; b E(R) —~ as R 0, which means in
this regime we have only a small BMP with a radius
of the order of a lattice constant. As A passes
through A, ', the radius rp of the BMP drops
abruptly from as/2 to a lattice constant. Our theory
cannot treat this second regime.

(b) A,t'l & A,('l.—As A increases from 0, ra de-
creases from as to a value r& ) aa/2, where the
core begins to saturate. The decrease of rp with fur-
ther increase in A is small because the increase in
kinetic energy associated with decreasing rp is less
efficiently offset by an increase in magnetic ex-
change binding energy. Through use of our hydro-
genic function, we have constructed a phase dia-
gram of the BMP, as a function of A, ' and A. This
is Fig. l.

When the core is saturated, the energy function
AE no longer has the simple form given above;
Emin-Holstein scaling no longer leads to useful

With 3 =0 ( VI = 0), we have Vq= 2T„ the
well-known virial theorem result, and a hydrogen 1s
state p(r) =exp( —r/rz)/(7rr03)' z as the ground
state with ro=t e/me =as, where aa is the Bohr
radius. As A increases, T, rises above Vd/2, a
consequence of the shrinking of the orbital radius,
eventually to the point where the square root in Eq.
(8) vanishes. Here we have Vd= T„VI=2T,/3,
and then ra= aa/2, if we use the hydrogenic wave
function with Rp as the variational parameter. The
square root vanishes when A = A, ', where
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2rc

rp
exp—

results. We have now, after some algebra,

Hp 1 Hp 3 2 1 ~ V S r
3bE= ,' N—gpaHS 1 — ——AS 1 — d3rltci( r )l2+ T, —— '

J d3rlg( r ) l
+ Vd, (11)

where N, is the number of unit cells in the core. The first term in Eq. (11) is the difference in energy
between local moments in the core fully aligned in the magnetic field Hp, and that of the spin-flop state
spread over the same volume, while the second and third terms describe the interaction energy between the
electron and the local moments, taking due account of the fact that 0( r ) =0 when r ( r, . For the hydro-
genic form of the variational wave function, the core radius r, is given by, with the volume of the unit cell in
Eu Te written as V, = a3/4,

r
38m'rp gp, BHC Hp1— (12)

We shall want to calculate the magnetic moment associated with this state:

M=gp StBN, + V J d rc os&(r )l.
I') fc

The change in magnetic moment AMgMp associated with the BMP may be written

AV, AV,
~MQMP gPBS

' +N, — ' 'd" ly( r )I'
C C

(13)

(14)

independent of field Hp, as long as Hp(& H, . If
there are ND donors present, each with a bound
electron, and the centers are independent,
NDAMgMp is then the change in moment of the
whole sample.
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FIG. 1. The phase diagram of the BMP, as a function
of 3, deduced through use of a hydrogenic orbital in the
variational calculation. As the solid line is crossed in the
direction of the increasing A, there is a sudden collapse
of the BMP from a "large" to a "small" state. For
A, '/A, " ( 1, the dashed line delineates the boundary
between the region where the core is saturated, and that
where it is unsaturated.

f

We now apply the above picture to EuTe. Here
we have2 5 S= —', , g=2, a=8, A =0.15 eV, I/
mp = 0.4 ( mp is the free electron mass), and
H, =75 kG. For the fcc lattice, V, =as/4 with
a=6.6 A in this case. Therefore att=10.6 A,
A, ' =—0.09 eV, and 3, ' =—0.011 eV for Hp=0.
We are thus in the case A, '~ )A, ', well into the
regime where the core is saturated. We find that
the radius rp of the hydrogenic 1s orbital that
minimizes the energy [we use Eq. (11)] is rp= 6.72

Eq. (12) gives r, = 0.994rp = 6.7 A. Then
5MBMp = 545p, g, a large value. Although the
shrinking of the orbital, aq —rp, is quite significant,
our calculation shows that the main contribution to
5MBMp comes from the "halo" and not the fer-
romagnetic core. The halo gives 412',B out of the
545p, B, contrary to the common current picture
which emphasizes the role of the ferromagnetic
core. Vitins and Wachter have measured the mag-
netization curve of a doped EuTe sample (their
sample 399) which contains a donor concentration
sufficiently small that overlap between donors may
be ignored. They indeed find a magnetization that
can be described as M = XpHp+ NDAMBMp, with Xp

the susceptibility of EuTe in the flopped state. At
low temperatures the free carrier concentration n is
small, and ND can be taken equal to the donor con-
centration. At room temperature, n = AD
&& exp( —E,/ka T) and from the value of n at room
temperature and E, given by these authors, we find
ND=9&10' cm . Then our model gives for
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1VDAMaMp/N, the average excess magnetization per
unit cell generated by the BMP, the value 0.36p, z,
in good accord with the data.

As remarked earlier, Vitins and Wachter as-
sumed that ferrons were responsible for the excess
magnetization. But at low temperature, very few
free carriers are present, and they had to assign an
enormous moment (14000@,tt) to each ferron as a
consequence. Nearly all the free carriers were in
fact frozen out and trapped at the donor sites at low
temperature. As we have just seen, the much more
modest moment associated with the BMP states
provides an explanation for the data. Elsewhere
we show that for parameters relevant to EuTe, in
fact there are no ferrons in EuTe. The same con-
clusion follows from earlier work of Umehara and
Kasuya, if the parameters deduced by Vitins and

Wachter are employed.
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