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Critical Dynamics near the Oscillatory Instability in Rayleigh-Benard Convection
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The oscillatory temperature amplitude of a low-Prandtl-number fluid in Rayleigh-Benard
convection is shown to exhibit critical slowing down near the onset of oscillatory convection.
The data are analyzed in the context of a mean-field Landau-Hopf equation. We find the
magnitude of the power-law exponent for the dynamic relaxation to be 1.01+0.02 and
1.00+0.02 above and below onset, respectively, in agreement with the theoretical predic-
tions.

PACS numbers: 67.60.—g, 44.25.+f, 47.20.+m

We have studied Rayleigh-Benard convection in a
He —superfluid- He solution with He atomic con-

centration of 1.46'/0. In a large temperature range,
these dilute solutions have been shown' to exhibit
effectively single-component properties with very
low Prandtl number; the present solution at 0.85 K
has a Prandtl number of 0.066. In this system, the
first two convective instabilities that are observed as
the Rayleigh number is increased are the onset of
classical Rayleigh time-independent (stationary)
convection and the onset of time-dependent (oscil-
latory) convection. This paper investigates the
steady state and dynamic properties of the latter in-
stability.

Instabilities in many systems far from equilibri-
um exhibit features of equilibrium phase transi-
tions. The exact nature of this correspondence is
of great interest. The Rayleigh-Benard convec-
tive instabilities should provide excellent examples
of this analogy. In particular, they should serve as
classic illustrations of mean-field phase transitions
because hydrodynamic fluctuations are small except
extremely close to onset. ' Indeed, both Behringer
and Ahlers and Weisfreid et al. can describe the
dynamic and steady-state properties of the station-
ary convective instability using a Landau-Hopf for-
malism.

In contrast, for the oscillatory convective instabil-
ity, although Libchaber and Maurer' have ob-
served critical slowing down of the oscillatory tem-
perature amplitude below onset, there have been no
reported measurements above onset or detailed
comparison with Landau-Hopf theory. We have
measured both the steady-state and transient prop-
erties of the oscillatory temperature amplitude both
above and below onset and found this transition to
be a classic example of the Landau-Hopf formalism.

The experimental system in which we study
Rayleigh-Benard convection has been described in
detail elsewhere. ' In addition to aspect ratio, the
two dimensionless parameters that characterize
single-component convection are the Rayleigh (R)

and Prandlt (o.) numbers defined as

R =gPd'6—T/v ~ and (T = v/K,

where g is the acceleration of gravity, p is the ther-
mal expansion coefficient, d is the cell height, 6 T is
the top-bottom temperature difference, v is the
kinematic viscosity, and K is the thermal diffusivity.
We also define the stress parameter for stationary
convection as e= R/R, —1, —where R, is the Ray-
leigh number at the onset of stationary convection.
The temperature of the bottom plate of the cell for
the present work is 0.85 K, for which the measured
R, is 2033, the calculated Prandtl number is 0.066,
and R at the onset of oscillations is about 1.1 x10 .
Our cell is rectangular with aspect ratios I
=L/2d =1.0 and I"= W/2d =0.70, where L and
8'are the length and width of the sides, respective-

ly, and d =0.80 cm is the cell height.
Another characteristic of our experimental cell is

a highly sensitive local temperature probe (a dif-
ferential SQUID thermocouple) which measures
the horizontal temperature difference between a
small, weakly thermally isolated center plug and the
rest of the top plate. Another similar thermocouple
measures the top-bottom temperature difference.
The high sensitivity of these thermometers, " the
actual physical design of the cell, particular aspects
of the measurement technique, ' and special prop-
erties of the solutions' are described elsewhere.

Below eo, the value of the stress parameter at the
onset of oscillatory convection, the convective flow
is stationary and thought to have the form of two
parallel rolls with fluid rising in the center. As re-
ported previously, above eo the rms oscillatory
temperature amplitude increases continuously with
a linear dependence on e from zero amplitude at eo.
The oscillations have a single frequency which
varies as e' . When the heat flow into the top plate
is suddenly increased or decreased, a nonsteady
state is created. The observed return to a steady-
state configuration occurs through relaxation of
both the nonoscillatory and the oscillatory com-
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ponents of the temperature field. The vertical ther-
mal diffusion time is r„—=4d /m'K=3. 56 s at 0.96
K (the mean cell temperature at eo), and the relaxa-
tion time of the nonoscillatory temperature field is

is obtained from an exponential fit to the re-
laxation of the dc component of either the probe or
the top-bottom thermocouple For 0.4 ) g ) —0.4,
where g=e —eo, we find r, /r„ to be constant
within experimental error with an average value of
0.64. Experimentally we find that the characteristic
time 7 associated with changes of the oscillatory
amplitude is much longer than 7, in the range not-
ed above. We separate the influence of ~, from the
determination of v in the analysis by waiting 47, be-

fore fitting the decay envelope for 7. As a physical
consequence, the thermal properties of the fluid
during the analyzed decay are characteristic of the
final state g.

The measurement of the relaxation time of the
oscillatory envelope for g )0 included increasing
the heat flow by a small increment or decreasing it
by the same increment to achieve the same final
state (. For final states ( &0, the heat flow was

suddenly decreased to the final state from an initial

state, chosen conveniently as (=0.2, above the on-
set. Figures 1(a) and 1(c) show examples of the re-
laxation of the oscillations for final-state values
above and below onset, respectively. Note that for
( &0, the oscillation amplitude does not decay
strictly to zero but is limited by the background
noise whose magnitude is about 0.3 pK. This intro-
duces a complication in the analysis which we dis-
cuss below.

Both the steady-state properties and the dynamic
relaxation of the oscillatory amplitude can be
represented by a Landau-Hopf equation which
McLaughlin and Martin' showed can be obtained
in an approximation to the Boussinesq equations.
The dynamic equation for the order parameter A
(proportional to the magnitude of the oscillatory
convective velocity) contains terms linear and cubic
in A. However, the quantity which we measure, the
envelope amplitude E, is related to the horizontal
temperature gradient over a cross section of the
cell, which, following Ref. 13, varies as the square
of the order parameter. Thus one finds for the time
rate of change of the oscillatory envelope

dE/dt = ctgE —c3E . (2)
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FIG. 1. Time series and resultant analysis of the envelope amplitude vs time for (a), (b) (=+0.219 and (c),(d)
( = —0.193 . The sharp spike in (a) is due to the abrupt change of the heat flow from the initial to final state.
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FIG. 2. Inverse of characteristic time ~ of the oscilla-
tory envelope normalized by ~„plotted as a function of
the final state g. The error bars represent the variance in

the characteristic time due to the fitting procedure.

The steady-state solutions obtained by setting
dE/dh =0 are E =0 and E+ = ct g/c3, correspond-
ing to solutions below and above onset, respective-
ly. This g dependence of the steady-state amplitude
is in excellent agreement with our observations. By
integrating (2), one obtains for ( above and below
onset the time-dependent solution

E(r) = — +
et/ E r=0

1 —1
—sc, ge (3)

from which one defines the characteristic time
r= I(/c t(l)l=7olgl '. We have fitted the en-

velope data above the onset with Eq. (3), see Fig.
1(b), and have found good agreement between
values of ~ for step-up and step-down jumps to the
same final value of (. In contrast, a simple ex-
ponential fit of the asymptotic form of Eq. (3)
yields different values of v for the different jumps;
the step-up time constants are systematically larger
than the step-down values. The differences range
from 15'/0 at (=0.45 to 50'/0 at /=0. 05 while we
estimate that the error due to the fit in 7 is less than
10%. This fact from the analysis gives substantial
support to the validity of the full form of Eq. (2)
for the time dependence of E.

As a check on the consistency of the fitting pro-
cedure we have analyzed the fitted final value of E
obtained in the dynamic measurements to check its
linear dependence on e. We find that the linearity
of Eis very good with very small scatter of the indi-
vidual points from the line. A least-squares fit
gives eo =4.172 +0.02 compared to 4.178 +0.01 for
eo measured independently from rms amplitude

FIG. 3. Characteristic time 7 of the oscillatory en-
velope normalized by r„vs i/i = is —eoi plotted on a full
logarithmic scale. The error bars are as in Fig. 2 and for
g )0 the average values of step-up and step-down mea-
surements are used. The solid and dashed lines are
least-squares fits as described in the text for (' &0 and
( (0, respectively.

data.
For step-down data when the final state is belo~

the onset, the envelope decays to a small value lim-
ited by the background noise; see Fig. 1(d). This
nonzero value complicates the fitting procedure be-
cause at large amplitudes the noise adds with ran-
dom phase and merely increases the scatter of E,
whereas at near-zero amplitude the noise is the en-
tire envelope. Because of the small amplitudes in-
volved, a fit by Eq (3) is. poorly behaved. Special
care was taken to use data at long times only, so
that one could use the asymptotic form of Eq. (3); a
simple exponential with an added constant term to
represent the noise [see Fig. 1(d)]. Corrections due
to the nonadditivity of the noise and to the use of
the asymptotic form of the Landau equation tend
to cancel according to a computer simulation, and
we estimate that the error in v due to the use of the
asymptotic form of (3) plus a constant noise term is
less than 10%.

The resultant characteristic times determined
from the analysis discussed above are plotted in the
dimensionless form of r„/r vs g, linearly in Fig. 2
and on a log-log scale in Fig. 3. It is essential to
note that (= s —so is evaluated from the final value
of e after a step-up or step-down and from eo in-
dependently determined from the steady-state data.
The data in Fig. 3 show an excellent fit with the
equation

(4)
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A least-squares fit to the data yields

rp=(1 24+0.04) r, y =1.01 +0.02

for ( )0, and

rp = (1.19 +0.03) r y =1.00 +0.02

for ((0, in agreement with classical predictions
for the exponent. ' For the prefactor, there is sharp
disagreement with theoretical predictions, ' calcu-
lated for the case of free top-bottom boundaries and
I =~. However, the small aspect ratio and rigid
boundaries appropriate for our experimental condi-
tions are probably important factors in determining
Tp,

A detailed description of this work is in prepara-
tion.
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