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Structure of Giant Nuclear Molecules
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Strong indirect evidence exists for the existence of attractive forces between nuclei making
surface contact. Experimentally, the recent observations of spontaneous positron production
in heavy-ion collisions can only be understood if nuclei stick together for times long com-
pared to the collision time. We show that any such tendency for nuclei to attract implies the
existence of nuclear molecules with entirely new kinds of collective modes. We present a
simple model for these modes and apply it to "'U-"'U.

PACS numbers: 25.70.Jj, 21.30.+y

There seems to be little doubt that spontaneous
positrons have been observed in recent' heavy-ion
experiments. The theoretical analysis' of the data
requires the nuclei to stick together for times T of
order 10 ' sec. Because the experiments are done
at nominally sub-Coulomb energies, it was initially
difficult to understand how the nuclei could get suf-
ficiently close together for attractive nuclear forces
to act. However, double-folding-model calcula-
tions have shown that the nuclear plus Coulomb
interactions of strongly deformed nuclei show a
dramatic dependence on nuclear orientation. These
calculations predict the formation of potential bar-
riers which are lower by 100 MeV when the nuclei
approach with their symmetry axes collinear than in
the least favorable case, in which they approach so
that their equators touch. Although the folding-
model predictions cannot be relied upon at shorter
distances where there is significant overlap of nu-
clear densities, they suggest the very real possibility
that a potential energy minimum exists in the nu-
clear surface —a "pocket, " depending on orienta-
tion, which can capture the nuclei. Improved po-
tential models are under study, and preliminary cal-
culations suggest the existence of pockets. The
purpose of this Letter is to show that pockets of
only a few megaelectronvolts in depth are needed to
produce a rich spectroscopy of quasimolecular reso-
nances, and to present a simple model for the struc-
ture of some of these states of heavy nuclear
molecules.

Quantum mechanically capture behind a barrier
and the resultant delay time imply a resonance, of
width related to delay time T according to

The "sticking times" required correspond to
50-100 keV. A simple estimate can be made of the
minimum depth D needed to produce a resonance
this width. Consider the potential V sketched in
Fig. 1(a). A resonance is expected at the energy
—,'Aced above the bottom of the pocket. The width of
this resonance can be estimated from the Hill-
Wheeler penetrability formula:

t

h QJ, 2' (D ——,'t to)
I = '1+exp-

27T, A 0)

In Eq. (1) we have assumed that the curvature
(tto) of the barrier top is the same as that of the
minimum. It can be estimated in the following
way, from essentially dimensional considerations:
Let the Coulomb potential, which varies slowly
compared to the nuclear potential, be approximated
in the region of contact by a linear function. Let
the nuclear contribution fall off exponentially, as
exp( —r/a). Then, at the potential maximum, we
have

d V —1 dVcoui

a dr

For the U-U system, the Coulomb repulsion
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FIG. l. (a) Sketch of potential with an attractive pock-
et, showing the location of the lowest energy resonance.
(b) Simple model for the "butterfly" and "belly dancer"
modes, showing the symmetry and the principal axes of
rotation.

changes by 30-40 MeV per femtometer in the sur-
face region. a is of the order 1.0 fm, so that the
"spring constant" is of the order 30 MeV/fm, and
hem is about 3 MeV. Assuming a width of 100 keV
results in D = 2 MeV. These estimates agree well
with the curvature of the double-folding barrier.
Another feature of these molecular resonances is
that they should exist with rather large values of an-
gular momentum. Because of the large moment of
inertia of these systems, the depths of the pockets
in the effective potential energy (potential energy
plus centrifugal stretching) vary slowly with angular
momentum I; the pockets persist up to values of
I = 100-200, or more. A pocket several megaelec-
tronvolts deep will result in one or more rotational
bands of hundreds of levels. These bands will cov-
er an energy of 10—20 MeV. This is an important
consideration in connection with the positrons. Be-
cause of straggling in the target, the effective beam
energy has spread of order 10 MeV. As a result an
isolated resonance of width —100 keV would be
unlikely to have an observable effect in such an ex-
periment. The molecular model does not suffer
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FIG. 2. (a) Energy level diagram for the vibrational
states of the giant nuclear molecule U- U and (b) dis-
tribution of angular momentum states in a 10-MeV win-

dow.

from this difficulty; it predicts many resonances,
spread over several megaelectronvolts. The calcu-
lated level density, if supplied by the excitation of
individual P-y vibrations of the two nuclei, yields
the order of magnitude of the observed cross sec-
tion. Moreover, recent calculations of the influ-
ence of such resonances on the positron production
show that the band structure plays an essential role
in the positron production theory.

This oversimplified treatment is essentially one
dimensional; it treats vibrational states in the rela-
tive motion. There are also quantized motions in
the orientation variables. These motions corre-
spond physically to hindered rotations of the de-
formed nuclei, each moving in the quadrupole field
produced by the other. Two of these new kinds of
collective vibrations are pictured, along with the vi-
bration in the r coordinate, in Fig. 2(a). We call
these "butterfly" and "belly dancer" modes of vi-
brations. Some of the new molecular collective
modes can also play a role in the fission of nuclei.
A simple collective model for these motions is
given below.

Before we proceed, it is instructive to compare
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the cohesive mechanism discussed here with that of
the dual resonance of quasi-molecular states in
light nuclei. In collisions of ' 0 on ' 0, for exam-
ple, internal excitations of the colliding, spherical
nuclei reduce their relative kinetic energy, so that
they drop behind the barrier and are trapped. Com-
pletely analogous would be the situation in which P
and y vibrations of the U nuclei were excited.
These have so far been neglected in our treatment;
ho~ever, excitations of internal states play a key
role here also. What is different in the present
model is the strong dependence of V on the orienta-
tion. Favorable orientations are achieved by
coherent excitation of rotational states of the indivi-
dual nuclei. Our description, in terms of rotations
of the system as a whole, superimposed on coupled,
hindered rotations of the individual nuclei, is
equivalent to, but more effective and physically ap-
pealing than, the description in terms of the mutual
excitation of rotational states.

We consider a system of identical nuclei such as
U- U, which are assumed to be axially sym-

metric. They are constrained as shown in Fig. 1(b)
so that both symmetry axes lie in a common plane
with the relative vector r. Also we require their
orientation angles to be equal and opposite.

The butterfly mode is an oscillation
in the variable e. The belly-dancer mode is a rota-
tion of the plane containing the symmetry axes.

8»=6Bppcos e+pr2,

833 = 6Bpp sin e.

822 = 6BPp+ p, r,

For the potential energy we choose

V= —,C,e + , C„(r —rp) .—

Pauli quantization of this system is carried out as
described in Ref. 10 including a change of volume
element. When L„' (k = 1, 2, 3) are the compo-
nents of the angular momentum operator in the
molecular frame, we obtain for the Hamiltonian

For a very deep pocket these constraints are very
reasonable. Even when the pocket is not so deep
this model gives a good qualitative picture of some
of the motions.

The classical kinetic energy for the physical sys-
tem in Fig. 1(b) is given by

g„„~k'+3BPp~'+ ,' p, r'—. (2)

The ask are angular velocities measured in the in-
trinsic frame, Pp is the deformation of the nuclear
ground state, and B is the collective inertia parame-
ter. The notation is that of Eisen berg and
Greiner. ' The reduced mass of the sytem is p, .
The term proportional to ~ corresponds to the but-
terfly motion. The belly-dancer motion is a rotation
about the z axis. The principal axes and moments
of inertia of the system of Fig. 1(b) are easily deter-
mined. The moments are

LI, g2 |)2 g2 ti2 1 p 1 g (1+sin g)+ —C,e + C, (r —r—p)— (3)
2gkk 12BP2 t)g2 2p tir2 2 2 48BP2 sjn2q

P

We assume small vibrations and approximate 0by expanding in powers of e and r = r —ro. The lowest-order
Hamiltonian is

(4)

with

2I +1
16m (1+Bkp)

(D„'~+ ( —1)'D'„~]X,~ „(~)g„(r).IIp,Kn, n, ) =

8p=6BPp+ p, rp.

Equation (4) has the same mathematical structure as the Hamiltonian of the rotation-vibration model
(RVM). 'p " Its eigensolutions are similar to those of the RVM with one difference: The projection of the
angular momentum on the molecular z axis E is replaced by 2E, because of different factors of the terms—Lo and —e . The wave functions must be symmetrized' so that they are single-valued functions of
the laboratory coordinates. The result is

-
i/2

&/2

(n„+ —,
' ) +t

6BI3o,
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The function g is a one-dimensional harmonic oscillator function, and X is given in Ref. 10. The energy is
given in Ref. 10. The energy is given by

r/2

E = [I(I+1)—K ]+8' ( IK I
+ 2n, + 1)

28p IM
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with K =0, 2, 4, . . . ; I =0, 2, 4, ..., if E =0, and
I =K, K+1, K+2, ..., if K &0. Because a system
of identical nuclei is treated, the wave function
must be symmetric under e —e. Because of this
symmetry, K must be even. The structure of the
energy eigenvalue formula shows that the r and e
motions of the giant nuclear molecule are analo-
gous to the P and y motions of ordinary deformed
nuclei.

A calculated spectrum for the U-U system is
shown in Fig. 2(a). The parameters C, and C„were
taken from Ref. 5, and the others from RVM treat-
ments of U. This potential has fairly deep pock-
ets, 20 MeV deep for the most favorable orienta-
tion. The parameters areh2/20o=0. 57x10 ' MeV,
C, = 30 MeV/fm, and C, = 279 MeV/rad . Only
bandheads are shown in Fig. 2(a). For each band
there is a rotational band of closely spaced levels.
Each band is classified by the quantum numbers
(K,n„n„). For example, (2,0,0) I=2 and (0,1,0)
I =0 are pure belly-dancer and butterfly modes,
respectively. In order to illustrate the number of
resonant states in a given energy range, we show in
Fig. 2(b) the distribution in angular momentum of
energy levels in an energy window of 10 MeV. The
energy window is centered near the top of the bar-
rier for I =O. Not all states in this window are in-
cluded, only those which ~ould make a nonnegligi-
ble contribution' to the positron yield (1 keV
& I' & 10 MeV). The widths were estimated using

the Hill-Wheeler formula. The total number of
states represented in Fig. 2(b) is of order 1000.
The angular momentum distribution is peaked
about an average value of (100—120)It.

Not all of the collective modes of giant nuclear
molecules have been treated here. In reality nuclei
are not constrained to move so that their symmetry
axes are in the same plane. Relaxing this constraint
means that there need not be symmetry under

—e, and K need not always be even. Numeri-
cal calculations have been made' which are free of
these constraints, and they indicate that the odd-K
bands have excitation energies of the same order as
the even-K bands.

Clearly the existence of cohesive forces between
the surfaces of deformed nuclei leads to a rich
variety of entirely new collective modes. These
quasimolecular states have properties needed to ex-
plain the spontaneous positrons observed in heavy-
ion collisions. Their existence would influence oth-
er processes; for example, they may be "doorways"
for sub-barrier fusion.

We gratefully acknowledge many helpful discus-
sions with J. A. Maruhn, M. Seiwert, and U. Heinz.
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