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Relativistic Naive Quark Model for Spinning Quarks in Mesons
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We use two-body Dirac equations (derived from Dirac's constraint mechanics and super-
symmetry) to make the naive quark model fully relativistic. Our covariant equations incor-
porate not only relativistic kinematics but also dynamical recoil effects that generalize Breit
corrections to forms that have well-defined quantum short-distance behavior. In these equa-
tions, a crude but covariant generalization of Richardson s static quark potential produces a
surprisingly good one-parameter relativistic fit to the meson spectrum.

PACS numbers: 11.10.Qr, 12.35.Ht, 12.70.+q, 14.40.—n

The nonrelativistic naive quark model provides a
good first approximation to the quantum dynamics
of heavy quarks in mesons. %e propose to extend
its simple dynamical structure to the light-quark
mesons through a relativistic description of two in-
teracting spinning particles given by two coupled,
compatible Dirac equations on a sixteen-component
wave function. ' This exactly relativistic treatment
of the two-body problem, which follows from a su-
persymmetric extension of Dirac's constraint
mechanics, avoids classical no-interaction theo-
rems and quantum ghosts through covariant control
of the relative time. The two-body Dirac equations
reduce to a Schrodinger-like four-component form
that combines strong-potential structure important
in the Dirac phenomenology of nuclear physics
with recoil structure appropriate to a relativistic
two-body system. This new structure, necessary for
interacting Dirac particles, is missing for one or
both particles from previous works that relied on
semirelativistic (slow-motion, weak-potential) ap-
proximations (using Breit-corrected Schrodinger
equations ), partly relativistic schemes that treated
the kinematics exactly while approximating the po-
tential as though it were weak (using truncations of
the Bethe-Salpeter equation or the full Breit equa-
tion), or asymmetric relativistic schemes that hold
one particle on mass shell. 5 The neglect of this
structure has led some authors to overestimate the
size of many-body and chiral-symmetry contribu-
tions for the light mesons. 6 To test the importance
of this new nonperturbative structure in our equa-
tions for relativistic quark-antiquark interactions we
calculate the meson spectrum predicted by inserting
into our equations a one-parameter relativistic gen-
eralization of Richardson's static heavy-quark po-
tential. Previously we extended this potential to

the light- and intermediate-mass vector mesons in a
two-body Klein-Gordon equation derived by means
of Dirac's constraint mechanics.

Richardson's non-relativistic potential takes the
form V(r) =8mA2r/27 8mf(Ar—)/27r, combining
asymptotic freedom and linear quark confinement
[since for r 0, f (Ar ) —1/lnAr, while for

~, f(Ar) 1]. Its relativistic generalization
in the constraint approach requires two important
modifications. First, compatibility of the con-
straints implies that the variable r must be reinter-
preted covariantly as the interparticle separation in
the c.m. system. That is, r = (xi2 ) 'l2 where

xi =(g"" P"P"/P )(xt —x—2)„, with P the total
momentum. Secondly, Richardson's potential must
be reinterpreted as the static part of a system of co-
variant potentials. Although there is no field-
theoretical justification for treating the long-range
part as a scalar, string arguments indicate that
there are no long-range (1/r) spin-spin terms so
that the long-range potential cannot be an elec-
tromagnetic vector with both spacelike (magnetic)
and timelike (electrostatic) parts. Hence some au-
thors assume that the long-range part should be
treated purely as a timelike four-vector [here of
the form V"= ~Pt", where P"= P"/vv and
w = ( —P2) 'i is the c.m. total energy]. Just as does
the squared form of the Dirac equation, our two-
body form contains a nonconfining —W 2 piece pro-
duced by the long-range electrostatic part. Since
the scalar interaction leads to a corresponding con-
tribution of +5 in such a model, we must include
a long-range scalar part to maintain confinement.
To avoid adding an extra parameter to our potential
model, we divide the long-range part into half scalar
and half timelike four-vector while assuming the
shorter-range Coulomb-like piece to be an elec-
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tromagneticlike four-vector given in terms of a
scalar M. That is, S= g =82rA'r/54 while M
= —87rf(Ar)/27r Th.is choice leads to a cancella-
tion of spin-orbit effects at long range, thus
preventing partial multiplet inversions for the
lighter mesons.

In the spinless case, these potential forms are
determined by requiring the desired nonrelativistic
limit and compatibility of the covariant generalized
mass shell constraints for the constituent particles,
8;=(p;—A;) +(m;+S;)'=0, in which consti-
tuent vector potentials given by A;"=c(,pP'+p, pP
are introduced by minimal substitutions. The clas-
sical compatibility condition on the two constraints,
(M1,W2) =0, implies that only two of the four
scalars u;, P; and one of the two scalars S; are in-

dependent. These three independent system
scalars, M, P, and S, must be functions of xi and
are related to constituent potentials A;",S; by
M, '—= [m, +S;(S,sf )]'=m +G (2m„S+S'), 7r~
—=p;" —A;~ = P("E; (M, V) + Gp(', where G2—= 1/

(1 —2M/w) and E, (zf, X ) =—G[(e; —Q) —2e„
x F'+ V']' '. The variables e1 and e2 are the c.m.
energies of the constituent particles while the rela-
tive momentum is p"= (e2p[' —e1pg')/w; m =m1
&& m2/w and e„= (w —m1 —m2 )/2w are the rela-
tivistic reduced mass and energy. In the quantum
case, with Hermitian ordered 3;"'s, the two-body
Klein-Gordon equations are~;1I( = 0.

Even with potential forms fixed by requiring
spinless compatibility, the transformation from the
two-body Klein-Gordon equations to the two-body
Dirac equations is not as simple as replacing each of
the Klein-Gordon forms by the corresponding one-
body Dirac form. In the spin-dependent case, com-
patibility of constituent Dirac equations requires the
presence of extra spin-dependent recoil terms that
have no one-body analog. These terms are conse-
quences of supersymmetries of the pseudoclassical
two-body Dirac system. The two-body (c.m. ) Dirac
equations with scalar' and both types of vector in-
teraction are

(M1 —E1y1) 1 1
'7E1

1
'7M1

&,Q=y»G y, p+ +—
y2 '71nGy2 y1+ —y2 y', y', ——

y2 /=0,
2 2

(M, -E,y', )
»(F = y52 G —y2 p + 6

7E2 {) 0
I' (7M2

'71nGy1 y2 ——y; y, y2+ —y, 1[(=0.
1 1

The three extra spin-dependent terms at the ends of these equations vanish in either heavy-particle limit.
With these extra recoil terms, the compatibility condition, [g1,+2] =0, is automatically satisfied for poten-
tials obeying the restrictions already encountered in the bosonic case. We perform an exact reduction of the
two sixteen-component wave equations (1) to the following four decoupled (with diagonal y, 's) four-
component Schrodinger-like equations (see Ref. 1 for details of this procedure):

(p +(ps1+(ass +(I1s o +(pr+4n o) 1[(=b2(](,

where

4si =2m„S+S +2m„~ —l +2~ M —&,
(ass = —'7 In(X1X2G ' ' )/2+[7ln(X1X2G ' ' )1 /4 +('71nG) (3+ o.

1
o.2)/18,

@SO = —(()lnX1/()r L (r1+BlnX2/Clr L o 2)/r,

br=Sr[ —(r 8 lnG/()r' —BlnG/'dr)/r +'71nG '71n(X1X2)]/6,

o = (~ 5) /4 [E2 (r1 ' 7[ (r2 ' (~ g)]/w +6 (1'r72[ (r1 ' (~ 5 )]/w
—cr1 o2'71nG (,~ —g .) —o.

1 '7ln(X1) cr2 (M P~')—
—(r2 ' 71n(X2) 0 1

' (M 8 ) )( ) (@S.l. I2 )/(2X1X2),

with X;= (E;y; +M;)/G, ~ ='7(M1' +M2 )/ 4M1M2, »d 8' ='7(E1'+E2 )/4E1E2yly2.
The square of the c.m. on-shell value of the relative momentum has the effective one-body form

b = e„—m„building correct two-body relativistic kinematics into (2). The interaction (p is divided into five
parts. The spin-independent part (ps, , the spin-spin part (ps s (including the Darwin terms), the spin-orbit
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part Cso, and the tensor term 4T are accompanied
by 4D o, the diagonalized form of the doubly odd
(in y t and y ~) pieces stemming from the end
terms in our two-body Dirac equations.

Although the potentials in (l) and (2) have a

static appearance, the covariant equations in which

they appear produce corrections agreeing perturba-
tively with dynamical recoil effects implied by rela-
tivistic quantum field theory. ' We have found that
if we let S =g =0 and M = —n/r, (2), in its weak

potential form [ln(l —A /2w) '~ —A /w] is

equivalent to the Todorov equation for spin-one-
half particles under mutual electromagnetic interac-
tion. " Furthermore, the slow motion (semirela-
tivistic) limit of this weak potential form is canoni-
cally equivalent' to the Fermi-Breit approximation
to the Bethe-Salpeter equation, thus producing the
usual spectral results through order 0.4 for two-body
bound states. The success of the constraint ap-
proach in predicting the n (hyper) fine structure of
QED with just the Coulomb potential as input gives
us confidence that it may accurately reflect the
(hyper) fine structure of QCD with an appropriate
static potential as input. Unlike the local forms of
the Bethe-Salpeter equation or even the Todorov
equation, our Pauli forms make quantum-
mechanical sense in the strong potential, nonper-
turbative regime ~here relativistic effects of the
wave operator on p are not negligible. This claim is
easiest to explain through the following comparison
of the main spin-spin term of our equation with

those of Breit and Todorov (two-body Dirac form
Breit form):

t
2

1 2M 1 ~1'~27 ~——
cr& 0.2V' ln 1— +

6 3 ffI, ~
+ Ptl2

For M 's that have singular short-range behavior
like n/—r (QED) and 8m/27r lnr (QCD) the weak

~ form on the right-hand side can only be used in
a perturbative calculation. Our form' (on the left-
hand side) can be used nonperturbatively when the
effect of this term on the wave function is not
small. The logarithmic terms appearing in our Pauli
forms provide a natural smoothing mechanism,
avoiding the necessity for extra singularity-
softening in phenomenological applications. '

We have performed numerical calculations of the

qq bound states using Eq. (2). To solve for the
eigenvalue b' we use an iterative technique since
the 4's depend on w. We use a spectroscopic nota-
tion that describes the quantum numbers associated
with the upper-upper decoupled four-component
Schrodinger-like equation. The single parameter A

in Richardson s potential is not fitted to any partic-
ular meson or meson family; instead the fit is
weighted in favor of mesons with the best known
masses. Mesons left out of this fit were the q, q',
and others that require annihilation contributions.
This "best" fit to the overall meson spectrum gives
A=0.401 GeV and b, c, s, and u quark masses of
4.922, 1.574, 0.364, and 0.186 GeV respectively.
From Table I (units are in gigaelectronvolts) we see

TABLE I. Meson mass fit produced by one-parameter potential.

Name Expt. ' Theory Name Expt. ' Theory Name Expt. ' Theory

Y: bb 1 Si
Y: bb 2'S,
Y' bb 33Si
Y: bb 43Si
Y: bb 13Pp

Y: bb 13Pi
Y: bb 1 P2
Y: bb 2 Pp
Y' bb 2 P
Y: bb 2'P2
8: bu 1'Sp
p: cc 1'Si
p: cc 2'Si

cc3 S&

CC1 Pp
X: cclPi
X: cc 13P2

9.460
10.021
10.351
10.572
9.872
9.893
9.913

10,234
10.251
10.267
5.268
3.097
3.686
4.029
3.415
3.510
3.556

9.488
10.016
10.345
10.607
9.855
9.890
9.916

10.216
10.241
10.259
5.209
3.123
3.664
4.076
3.400
3.482
3.535

p: cc 1'Di
cc2D~
cc3 Di
CC1 Sp
cc 2'Sp

p: cc 1'Pi
p: ss 13St
P': ss2Si
S: ss 1 Pp
E: ss 1 Pi
f': ss 1'P2
F'. cs 1'Si
F: cs 1'Sp

3.770
4.159
4.415
2.980
3.590
3.455?
1.020
1.684?
0.975
1.420
1.515
2.140
1.970

3.768
4.147
4.485
3.013
3.598
3.497
0.972
1.715
1.127
1.394
1.521
2.085
1.959

p.' uu 1 Si
p. uu2S(

uu 13Pp

~~.' uu 1'P&

A2. uu 1 P2
g. uu1D3
77". uu 1 Sp

uu 2Sp
uu 1 Pt

~3.'uu 1'D2
D': cu 13St
D: cu 1'Sp

su 1 Si
01.' su 1'P,
E'. su 13Pp

su 1 Sp
0: su 1'Pi

0.770
1.620
0.983
1,275
1.320
1.690
0.139
1.300?
1.228
1.680
2.007
1.863
0.892
1.280
1.423
0.496
1.280

0.677
1.555
0.783
1.189
1.334
1.795
0.274
1.342
1.185
1.714
1.949
1.818
0.824
1.284
1.421
0.515
1.297

'Ref. 15.
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that the m-p splitting is 228 MeV off. Nevertheless
it is our belief that the pion is not "too relativistic"
for the constraint approach. '6 The E-E '

splitting is
87 MeV off. The F F',-D D",-and p-q, splittings
are progressively more acceptable. Note that just as
for the experimental results, the ratio R = ( Pz
—'P&)i ('P& —'Po) predicted for the 1'P multiplets
monotonically decreases with increasing meson
mass even though virtually all of the spin depen-
dence in this model comes from the (1jr)-like part
of the potential. This nonperturbative result con-
trasts with those of perturbative treatments of
Coulomb-like potentials. ' They predict 8 —0.8
and are rather insensitive to the mass scale. Our ra-
tios are 0.74, 0.65, 0.48, and 0.36 for the bb, cc, ss,
and uu 1P systems versus the experimental values
of 0.95, 0.48, 0.21, and 0.15. Our results for 8 for
the heavy mesons compare favorably with those of
Ref. 4, that depend on an electrostatically induced
long-range Thomas precession. A still better fit for
R has been obtained by Schnitzer in Ref. 6 but it
uses a three-parameter QCD refinement of the po-
tential. We have also computed the (M, ) (the ef-
fective constituent masses) for the s and u quarks
and found that they are 0.456 and 0.305 GeV,
respectively in the $ and p mesons (consistent with
those masses needed to reproduce the simple quark
model values for the magnetic moments of the pro-
ton and $+ baryon). Thus, if we had fixed (M„)
and (M, ) initially, we would have had only two
free parameters left, m, and mb.

Although Richardson's potential is merely an ap-

proximation to the static QCD potential and al-

though we have made a crude guess at its covariant
generalization, the relativistic wave equation in
which we have placed it produces a good overall fit
to the meson spectrum with just one potential
parameter. In fact, our one-parameter exactly rela-

tivistic results are superior to most of those of the
multiparameter semirelativistic approaches. ' The
reason for this is that the constraint approach con-
tains more than just relativistic kinematics; it has

the capacity to incorporate dynamical recoil effects
characteristic of a field theory in a nonperturbative
way.
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