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Certain unstable periodic orbits are shown to permanently scar some quantum eigenfunc-
tions as t 0, in the sense that extra density surrounds the region of the periodic orbit.
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Periodic orbits have played a large role in the
theory of semiclassical quantization of bound states.
Applications have involved the Green's-function
coordinate-space trace formula, which squarely
places the burden of quantization on a sum over
classically periodic orbits, in the asymptotic (sta-
tionary phase) limit. In particular, Gutwiller, Ber-
ry and Tabor, and Balian and Bloch have made
much progress with level densities and eigenvalues
of nonintegrable systems using periodic-orbit
theory. In the mathematical literature, the related
Selberg trace formula gives exact eigenvalues for
the Laplacian in certain cases as sums over all

periodic orbits (see Hejhal ).
These earlier studies have been concerned with

eigenvalues. Here, I outline a proof of an impor-
tant effect of short-term, unstable periodic orbits on
the eigenfunctions of classical chaotic systems: They
induce "scars" of larger than expected density in at
least some of the wave functions. The scars
coalesce around the unstable periodic orbit ever
more closely as h 0. These are new implications
of periodic-orbit theory for eigenfunctions of chaotic
systems.

In the pioneering studies by McDonald (see also
McDonald and Kaufman6), what are here called
"scars" were noticed for the stadium billiard sys-
tem, but their connection with the periodic orbit
("rays") was termed "unknown, " and "an enig-
ma. " My own work on smooth potentials showed
similar scarring effects.

In the irregular (chaotic) classical regime, phase
space may be dense with strictly periodic orbits, but
their measure is zero. All the periodic orbits are
unstable, but the stability parameter governing the
exponential separation varies from orbit to orbit.
We focus on that small subset of periodic orbits
with the shortest periods and the smallest separa-
tion rates. It is assumed that orbits of similar
periods and stabilities are isolated.

The classical equations governing stability of or-
bits are expressed in terms of small deviations 5p,
in momentum and 5x, in position from the refer-
ence trajectory. They are (mass =1)

r 't

0 —V"

dt Sx, j. 0 Rc

where V" is the N xN matrix of second derivatives
of V(x) at x, , I is the N&&N unit matrix, 0 the
N xNnull matrix, and hp, , Sx, are N x2Nmatrices
corresponding to the 2N linearly independent devia-
tions about the reference trajectory. The deviations
hp, and 5x, may be expressed in terms of the initial
deviations bpo and Sxo as

1

~po
=M

5 (2)
j

where Mis the so-called monodromy matrix.
Equations (1) and (2), together with the trajecto-

ry (x,,p, ) and the action integral P, = fp, dx, —Ei
are sufficient to propagate Gaussian wave packets
semiclassically. They take the form

g(x, t) =exp {(i/t) [(x—x, ) A, (x —x, ) +p, (x —x, ) +y, ]I, (3a)
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where

3,= —,5p, (5x)
and

y, = @,+ —, ih Tr [ln 5xi ' ( 5xo) ] + 'yo.

(3b)

(3c)

an wave packet dynamics are arbitrarily accu-
centered on a periodic orbit can make precise
y resolved spectrum

(4a)

(4b)

T sometime after the first decay but before the first
recurrence.

The existence of the bands imposes new require-
ments on the intensities I„. A band near E =Eh
will have a strength (total intensity) Sg(Ei, )/Db,
where Db is the density of bands. Since Ace is the
spacing of these bands, Db=(tcu) '. The band-
width of it A. implies there are tiAD(E) sta.tes under
the band. These must collectively have the band
strength Sg(Eb)/Db, so if they share this burden
equally they must have a higher intensity

Ib= [Sg(Eb)/Db]/[t) D(Eb) ]
= ( iu/X) I„)I„. (7)

If the burden is not shared equally, then some
eigenstates must have even higher intensities.
Thus, for large iu/X, the square of the overlap

1(gI P„)1' for some subset of the i]i„must be large
compared to the statistical estimate, Eq. (6) .

Moreover, since

1(gI y. ) I' =1(g(t) I y. ) I', (8)

a p„with large overlap with Ig) has large overlap
with Ig(t) ), which is localized periodic orbit for the
first period for large iu/X. Thus, i[i„has large proba-
bility all along the periodic orbit.

If g(x, 0) is launched just off the periodic orbit,
then as f 0 there will be no recurrences; the
spectrum will be unstructured, and no extra locali-
zation to that off-periodic orbit region is implied.

The scars are expected to be most prominent
around periodic orbits with large iu/X. The factor
cu/X controls the local density enhancement of the
scar and is t independent. As f 0, the scar nar-
rows around the periodic orbit, while maintaining a
constant density along the orbit. In this way, the
scar "heals" as h 0.

%e have shown the scars manifest themselves as
enhanced probability in phase space, as measured
by overlap with coherent states placed on the
periodic orbits. This translates also into enhanced

For our present purposes, (x,,p, ) will be the periodic orbit.
Hepp' and Hagedorn" showed that such semiclassical Gaussi

rate for any finite time t, as iI 0. Choosing our g(x, 0) to be
statements about the time evolution g (x, t), and thus the partiall

T
ai( ) =(ii2vr) J e px(i i) (glg( )i)di

= (I/m) $„[[sin(E„/ii —cu) 1)/(E„/ti —iu) ]1(gl i1i„) I

In Eq. 4(b) we see that er(cu) is a smoothed ver-
sion of the fully resolved spectrum, e (iu) .

As discussed before, ' the main qualitative
features of 1(gI g( t) ) I

are (1) a rapid decay to zero,
and (2) recurrences of decreasing strength at multi-
ples of the period of the orbit, 7. The strengths are
determined by the monodromy matrix M, and the
matrices Ao and A, . Since the motion is unstable in
the chaotic regime, M will have at least one real,
positive characteristic exponent (RPCE). The de-
cay of 1(gIg(t) ) I at multiples of the period can be
shown to go approximately as exp[ —nay/2], where.
A. is the sum of the RPCE's. For smail h, the series
of recurrences is long over before the overlap reac-
tivates. The decay of the series of recurrences is
due to spreading of the Gaussian wave packet.

The consequence of (1) and (2) for er(cu),
where T is taken to be some time after the re-
currences have exhausted themselves, is a struc-
tured spectrum with an overall width ~h' . The
structure takes the form of broadened bands (re-
gions of larger spectral density) spaced by
5E=tiu=h/~, with a bandwidth tX. The ratio of
the width to the spacing is A./cu, independent of t.

Berry's conjecture' states that "each semiclassi-
cal eigenstate has a Wigner (phase space) function
concentrated on the region explored by a typical or-
bit over infinite times" (italics added). This was
taken further in the case of irregular motion to im-

ply uniform concentration, as embodied in the mi-
crocanonical density (see also Voros'4)

p (px) =5[E—H(px)]/D(E), (5)
where D(E) is the density of states and H is the
Hamiltonian. From this we easily estimate the a
priori spectral intensity

I.= I (gly„) I'= T (p,p, )

=Tr(pgp ) =Sg(E„)/D(E„), (6)

where S~(E) is the normalized energy probability
distribution for g(x, 0). Sg(E) is also the low-

resolution version of the spectrum, i.e. , er(cu) for
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(a

FIG. l. (a) Localized and (b) chaotic states of the stadium potential; only the negative contours are shown. From
Ref. 15, with permission.

probability in coordinate space along the periodic or-
bits. The conjecture that the wave functions would
be Gaussian random as h 0' must now be modi-
fied to incorporate the presence of scars.

The wave functions shown in Fig. 1, computed
by Taylor and Brumer' using the algorithm of
McDonald and Kaufman, ' illustrate the difference
between the ergodiclike states [Fig. 1(b)] and the

states affected by periodic orbits [Fig. 1(a)].. The
state of Fig. 1(a) reflects the existence of the non
isolated periodic orbits which bounce perpendicular-
ly to the flat walls of the stadium, and it may be
viewed as a "superscar, " resulting from the overlap
of many scars. However, it does not fit the theory
presented above because the orbits are not isolated.

The stadium potential, which is ergodic, also pro-
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FIG. 2. Left column, three scarred states of the stadium; right column, the isolated, unstable periodic orbits corre-
sponding to the scars.
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vides clear examples of scars due to isolated un-
stable orbits. Figure 2, shows three scarred eigen-
functions of the stadium, and the major contribut-
ing periodic orbit in each case. These are just a few
of nearly a dozen types of scars found so far, using
a simple algorithm written by the author.

These scars are considerably denser than the fac-
tor to/A. , (at least by a factor of 10), which for the
horizontal bounce case is only 1.8, and for the V-

shaped orbit, only 1.5. The factor co/X is a lower

bound to the scar density. First, we noted that co/),

obtains when the states under the bands share the
burden of the intensity of the band democratically.
This need not be the case, which implies that some
states are scarred to an extent greater than to/X.

Since these scarred states are so ubiquitous
(about half the states have one or more recogniz-
able scars), it seems unlikely that any eigenstate of
the stadium is ergodic. It is true for example that
the state in Fig. 1(b) looks ergodic, but one can

easily be misled by looking only in coordinate
space.

A theme of the investigations in Ref. 2 has been
that periodic orbits say much about level densities.
In particular, the periodic orbits of the type we have
been considering induce fluctuations in the other-
wise smooth background density of states. Clearly,
an analogy exists between this and the density fluc-
tuations (scars) we have shown must exist for the
eigenfunctions.

Gutzwiller' has emphasized extraction of eigen-
values of chaotic systems using periodic orbits. Ex-
tension of the analogy of the previous paragraph
suggests that more detailed features of the eigen-
functions can be determined by the periodic orbits.

Very often the underlying classical mechanics is
not so simple as an isolated, unstable periodic orbit.
For example, complex regions of phase space, in-

volving many similar periodic orbits and island
structures may exist in small domains. Our theory
does not strictly apply to such cases, but it seems
evident that increasing the density of similar
periodic orbits can only enhance the scarring effect.

I thank N. DeLeon, R. Sundberg, and E. Pollak
for stimulating discussions and critical comments.
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