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Calculation of Phonon-Phonon Interactions and the Absence
of Two-Phonon Bound States in Diamond
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We demonstrate that anharrnonic phonon-phonon coupling constants can be extracted
from frozen-phonon total-energy calculations. The method is applied to the optical modes of
diamond. The zone-center coupling constants are completely determined through fourth or-
der, and are used to compute an effective four-phonon vertex including virtual optical-
phonon exchange. The interaction is found to have the wrong sign to allow formation of a
two-phonon bound state.
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Recently, several researchers have demonstrated
the feasibility of calculating phonon frequencies
from first principles by evaluating the total energy
for a series of frozen-phonon geometries. ' How-

ever, it is not as widely appreciated that the same
approach can be used to determine higher-order
anharmonic terms in the phonon Hamiltonian. '
In this Letter we report the first systematic calcula-
tion of this kind, a determination of the third- and
fourth-order anharmonic coupling constants for op-
tical phonons in diamond. The calculation is done
with a self-consistent localized-orbital approach to
local-density-functional theory. 5

To date, no reliable experimental or theoretical
information has been available on these optical
anharmonic terms. Measurements of anharmonic
elastic moduli, thermal expansion and thermal con-
ductivity, phonon linewidths, and pressure or stress
dependencies of phonon frequencies (Gruneisen
parameters) can only give information about purely
acoustical or mixed acoustical-optical interactions.
Theoretically, empirical Born- or Keating-type
force-constant models are inadequate, since there is

~

no reason to expect their range of validity to extend
beyond the harmonic approximation. Yet, these
optical anharmonic terms are of great interest.
Some fifteen years ago, Cohen and Ruvalds point-
ed out that a sufficiently strong positive fourth-
order coupling could give rise to a two-phonon
bound state, which in turn could provide an ex-
planation for an anomalous peak in the two-phonon
Raman spectrum of diamond. Alternative ex-
planations have been proposed, and the bound-
phonon model has remained controversial. The cal-
culations presented here demonstrate that the pho-
non coupling is actually negative, in which case the
two-phonon bound state cannot form in diamond.

For an optical zone-center frozen phonon, the
atomic displacements are

g(1) =u; g(2) = —u

for atoms 1 and 2, respectively. Defining the deriv-
atives of the energy per cell E/N as

E„=N 'dE/du„,

etc. , we can expand the energy in a Taylor series as

E Eo 1 1+ Q E~~i g u~iu+ X E„„„ri guug „u„+. . .
A, A,

(2)

tc = (1/2!)E~, y= (1/3!)E~„
a = (1/4! )E, P = (1/4! ) E~y.

(3)

Figure 1 illustrates the extraction of these con-

where A. labels the polarizations x,y, z. The only dis-
tinct nonzero elastic constants up to fourth order al-
lowed by the diamond crystal symmetry are

stants. In Fig. 1(a), we plot AE(u) = [E(u)
—Eol/N vs u for displacements along the
u II (100) direction. To obtain the Taylor coeffi-
cients, we expand the region near u=0 in Fig.
1(b), plotting AE/u2 vs u2. Then the intercept at
u = 0 gives the harmonic term K, and the asymp-
totic slope gives n. We also show in Fig. 1(b) simi-
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FIG. 1. (a) Energy change per cell vs displacement in

the (100) direction for a zone-center optical phonon.
Dots represent the calculated points; the energy curve is

symmetric about the dashed line. (b) Same data, now for
several directions, plotted on rescaled axes (see text),
showing asymptotes at the origin.

lar plots for u in the (110) and (111) directions; in
the latter case, there is no even symmetry, and so
we replace bEby /3, E= [AE(u)+DE( —u)]/2. It
can be shown that the asymptotic slopes are
(n+ 3P)/2 and (n+6P)/3 for the (110) and (111)
directions, respectively. The fact that the intercepts
coincide in Fig. 1(b) is reassuring, and the fact that
the curves are nearly linear indicates that sixth- and
higher-order terms are not yet important. Finally,

y can be extracted from the odd component of AE
in the (111)direction. We find

K = 22.36 eV a.u. , y = 24.49 eV a.u.
, (4)

tx = —28.98 eV a.u. , P = 2.08 eV a.u.

This completes the determination of the optical
zone-center elastic coupling constants up to fourth
order. The value of K implies a zone-center phonon
frequency of 1344 cm ', in excellent agreement
with the experimental value of 1332 cm '. This
agreement gives us confidence in the accuracy of
the calculated third- and fourth-order constants, for
which no experimental comparison is available.
The result that o. is strongly negative can be under-
stood by examining Fig. 1(a). A displacement of
u= a/2 maps the crystal back into itself, and the
energy curve is required to be symmetric about
u = a/4=0. 84 a.u. The calculated curve has, plau-

sibly, a cosinelike form; we would then expect al-

ternating signs (E~) 0, E~( 0, etc. ) for the
derivatives. This is precisely what we find. Several
empirical force-field models which attempt to go
beyond the harmonic approximation have been pro-
posed '; however, models of this type contain a
bond-stretching term and generally give the wrong
sign for o. , because they cannot reproduce the
periodic nature of /3, E(u) without introducing un-

physical cusps where the bonds are redefined at
u = a/4. The ab initio optical-phonon parameters of
Eq. (4) should be useful in constraining future at-
tempts at such models.

Let us now make the connection to the phonon-
phonon interaction amplitudes. The phonon Ham-
iltonian may be written"

H = Eo+ H2+ H3+ H4+. . . ,

where

H = T+ —X 111„"„," a-„„a-„,„,= Xtt (k, A. )(b-,„b-„„+—,
' ),

I
kk kA,

31 (2AI)1/2 ~ kk x kx k x' k
kk k

~kkkk
y ~ )) ) ~ ~k), kA, k ) k A,~~I~I I +III

kk k k

The normal-mode coordinates have been quantized as
&/2

2MQI(k, h. )
(b-„„+b' -„„) (6)

and we have made use of

The 4 are the bare anharmonic coupling constants which determine the multiphonon scattering amplitudes,
e.g. ,

2h ]/2 k
&

k 2 k 3 k4
(k3~3 ~ k4~4IH4~k 1~1 k2~2) 2 ~~lt02t03t04~

8NM2
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(9)

( k3~3 k4)141H4 I
k 1)~1 k2)k2) X( k3~3 k4)k41H31+, ) (12)

J
12 j

One-, three-, and five-phonon intermediate states must be considered, ' as shown in Fig. 2. As long as the
external lines have small k, the virtual phonons must also, because of k conservation at the vertices. Thus it
is consistent with the earlier discussion to make the approximations

@k k'k" @000 E E g~(2 &)

where n, is the number of phonons in VJ. Diagrams 2(c)-2(f) contribute to scatterings of the type xy xy,
etc. , with the result

(13)

The frozen phonon of Eq. (1) is given by

(2Nuk) 'l2, k = 0;Q~
kA,

,0, otherwise.

Substituting in Eq. (5) and comparing with Eq. (2), we find

(g) 00 ~~2 K g) 000(3 I/2) y (P 0000 (4 I/2) ~ (P 0000 (4 1/2)P

To see how these multiphonon scattering amplitudes bear on the question of the phonon bound state, we
follow Ref. 6 in considering the variational two-phonon wave function

I+2) = X4(k, )1.) Ik)1. , —k)k), (10)

where p(k, X) is the bound-state envelope. '2 The dispersion relation 01(k, )1.) is assumed to have an abso-
lute maximum sop at V, so that

AE2= (%2IH2I+2) —2to)p ( 0.
However, the fourth-order anharmonic coupling gives rise to an energy shift

/3E4= (%2IH4I+2) =
2 2

XP"(k', X')$(k, )1.)4&„"' „,"„' " '

8NM o)p2-
kk
XA,

The envelope function p must be strongly localized near I, because the two-phonon state is at mo«weakly
bound (weakly localized in real space). Since the coupling 4 is an analytic, i.e. , smooth, function of the k 1n-

dices '3 it is a good approximation to replace the coupling in Eq. (11) by C&„k, , Then it is easy to see that if
n and p were strongly positive, AEcould shift the expectation value ('P2IH2+ H4I'P2) above the top of the
two-phonon continuum. The variational estimate is a lower bound, and so the state would necessarily exist,
and would provide a natural explanation for the anomalous two-phonon Raman peak observed —2 cm
above 2&op. In reality, however, the strongly negative value of o. in Eq. (4) is likely to dominate Eq. (11),
making the bound state very unlikely.

So far we have omitted the influence of the third-order coupling which enters in perturbation theory and
gives rise to a renormalization to the fourth-order term,

f2
(k3x, k4yIH4 Iktx, k2y) = — (4~, ) .

12NM cup

Similarly diagrams 2(a) —2(d) contribute for scatterings xx yy, etc. , so that

(k3y, k4yIH4 I k1x, k2x) = —
3 4 (4~, ) .

4NM o)p

Comparison with Eq. (7) and use of (9) yield the renormalized fourth-order constants

n'=n= —28.98 eV a.u. 4, P'=P —y /2K= —11.33 eV a.u.

P"=P —3y2/2K = —38.16 eV a.u.

(14a)

(14b)

where P' and P" describe xy xy and xx yy processes, respectively. It is now clear that all of the renor-
malized fourth-order interactions are strongly negative; this result appears to rule out the existence of the
two-phonon bound state in diamond.
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FIG. 2. Feynman diagrams in which exchange of a vir-

tual optical phonon contributes to the re normalized
four-phonon vertex. Time runs in the vertical direction.

An alternative explanation for the Raman peak
near 2coo was suggested by Tubino and Birman, 8

who proposed on the basis of a Keating-type force-
constant model that the phonon dispersion does not
have its maximum at I, but rather somewhere
along the (100) or 5 direction of the LO branch. A
Raman peak originating from the saddle-point van-
Hove singularity at I would then occur at 20)0. OUI

ab initio frozen-phonon calculations support this
model. We have calculated the dispersion of the
LO-LA branch at q/X=O, —,', —,', and 1, using a

twelve-atom supercell geometry. Assuming that
the interplanar harmonic coupling constants can be
trucated beyond sixth neighbor, we can obtain the
entire dispersion curve along 5; the maximum,
which is indeed displaced from I, has a value 6.8
cm ' above ~0. Unfortunately, in the Tubino-
Birman model the peak is pinned at exactly 2~0,
thus the experimentally observed Raman shift
above 2coo remains puzzling.

The fact that the calculated coo is too high by—12 cm ' compared to experiment may be due in

part to the fact that only the bare frequencies have
been calculated. We can go one step further and
calculate the self-energy correction due to diagrams
of the kind shown in Fig. 3. There is now no re-
quirement that k be small for the internal lines, but
if we make the assumptions (13) anyway and use
the values of Etl. (15), we obtain

b r0 = (a+2P') = —17.4 cm '. (16)
4M o)0

This is the correct order of magnitude for the need-
ed correction.

In summary, we have shown that frozen-phonon
calculations can be used to determine bare pho-
non-phonon scattering amplitudes, and that con-
sideration of virtual processes allows renormalized
multiphonon vertices and phonon self-energies to
be calculated as well. The renorrnalized four-pho-
non vertices are found to be negative for optical
zone-center phonons in diamond, implying that the
two-phonon bound state cannot form. It appears
that this approach can be extended to compute oth-
er quantities such as decay lifetimes and even ther-

FIG. 3. Feynman diagrams representing the contribu-
tion of three- and four-phonon processes to the renor-
malization of the phonon self-energy.

modynamic properties, given a sufficiently sys-
tematic treatment along the lines illustrated here.
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Consideration of a more general polarization depen-

dence does not affect the conclusion that the shift AE is
negative.

&3We have calculated 4x"„~„" for a few points
along k ll (100); the results support this assertion.

~4We have omitted the effect of virtual acoustical-
phonon exchange, which would presumably make the re-
normalized fourth-order coupling even more negative.
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