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Relativistic Impulse-Approximation Calculation of P-Nucleus Elastic Scattering
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The first calculations of P-nucleus elastic scattering using the relativistic impulse approxi-
mation are presented and compared with the recent 46.8-MeV p-'2C elastic scattering data.
The calculated cross sections agree well with the data. The differences between relativistic
and nonrelativistic impulse-approximation calculations using the same input are small.

PACS numbers: 25.90.+k, 24. 10.—i

The success of the relativistic impulse approxima-
tion (RIA)' in describing proton-nucleus elastic
scattering cross sections and spin observables at in-
termediate energies is now well documented. If
this success is indeed a reflection of the importance
of a relativistic treatment of the dynamics in the
nucleon-nucleus system and not fortuitous, a rela-
tivistic treatment of antinucleon-nucleus scattering
should also be successful. Recently p-' C elastic
data at 46.S MeV have been presented4 which we
use to test and compare the relativistic and nonrela-
tivistic (NR) approaches.

In the absence of a calculable theory of hadronic
interactions the impulse approximation plays the
critical role of relating the empirical two-body

l

scattering information to the (A + 1)-body scatter-
ing system. The basis for the validity of the im-
pulse approximation rests upon the fact that for suf-
ficiently high energies the projectile-target particle
scattering can be characterized in terms of the free
two-body scattering. Medium corrections such as
Fermi motion, Pauli blocking, and binding are
small. In its simplest form the projectile-nucleus
interaction consists of the projectile-target-nucleon
Tmatrix folded with the nuclear density.

In the RIA the on-shell two-body scattering am-
plitude is written in terms of five independent am-
plitudes with scalar, pseudoscalar, vector, axial vec-
tor, and tensor Lorentz transformation proper-
ties, '

F= FsI&I2+ Fpy~y2+ Fvy j y2„+ F„y,y& y2y2„+ FTo-& "o-»„,

where I, y5, y~, and o.""are Dirac matrices and the subscripts 1 and 2 are particle labels. The relativistic po-
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tentials are generated by forming ground-state expectation values of Fgiven by

4mikU= — X (~,~~, lv, ),
m

where k is the laboratory momentum of the p and 'Po is the relativistic nuclear wave function. For a spin-
zero nucleus with filled l,j subshells only scalar, S, vector, V, and tensor, T, potential terms survive. Each
term of the potential is obtained by folding the amplitudes I' (n = S, V, T) with the corresponding densities
p, where

ps=x 4
(IAUI' —IILl'), pp=X

4
(let I'+leLI'), pr=2X2j+1 2j+1 2j+1

(3)

In Eq. (3), QU ($1) are the upper (lower) components of the relativistic single-particle wave function.
These potentials enter into the Dirac equation according to their Lorentz character,

[n p+P[m+ S(r) ]+ [ V(r) + Uc,„~(r)]—2iPn rT(r)}g( r ) = EP( r ). (4)

The Dirac representation of the two-body scatter-
ing amplitude is defined in the positive-energy
domain to be equivalent to the usual Pauli form for
on-shell scattering amplitudes. The important
difference between the relativistic and NR treat-
ments is the equation solved for the projectile;
specifically the inclusion of virtual negative-energy
scattering states. Tensor and vector-scalar density
difference effects are minor by comparison.

There is some question about the applicability of
the impulse approximation for projectile energies as
low as 50 MeV. However, since the imaginary po-
tentials have considerably larger radii than the ' C
nucleus the scattering is dominated by the nuclear
tail region where medium corrections should be
small. Furthermore, there are no corrections in p
scattering arising from the identity of projectile and
target particles. More formal support for the validi-

ty of the impulse approximation comes from the
work of Gibbs and co-workers. 5

The impulse approximation requires a complete
set of two-body amplitudes as input. Because NN
data is scarce, it is useful to exploit the connection
between nucleons and antinucleons given by charge
conjugation. Although any NN scattering diagram
can be related to an NN diagram, the physical
kinematical regions are different in general.
Knowledge of one physical amplitude does not
necessarily give information about the other. The
one-meson-exchange diagrams are an important ex-
ception. In this case NNand NNamplitudes can be
related by the G-parity operator. Under G parity a
nucleon coupled to a meson becomes an antinu-
cleon coupled to the same meson with a phase
which is the G parity of the meson. Since the
meson-exchange structure of the NN potential is

reasonably well known, the equivalent NN potential
can be constructed from it by 6 parity. To this

must be added a complex potential to describe the
annihilation process. This procedure has. been car-
ried out by several groups, using a phenomeno-
logical annihilation potential with parameters ad-
justed so that the Tmatrix generated by the NNpo-
tential fits with the available data. We use the T
matrix elements generated recently by Cote et al. 7

It should be emphasized that our analysis can be ap-
plied just as easily with the empirical NN amplitudes
as soon as those are determined to sufficient accu-
racy.

The G-parity argument at the level of the Dirac
equation for scattering from a nucleus cannot be
made. Consider the W-nucleus Dirac equation (4)
and ignore the small tensor contribution. The p
wave function is the charge conjugate wave func-
tion p, to proton wave function Q, and is given by
f, =iy Q' If S and . V are treated as numbers, it
can be shown that g, satisfies the same Dirac equa-
tion as Q but with p scalar and vector potentials
given by S-= S~', V-= —V~'. This ignores the ori-
gin of S and V, which are bound-state nuclear ma-
trix elements [see Eqs. (2) and (3)]. Proper treat-
ment of the charge-conjugation properties of S and
V in the Dirac equation would produce p-anti-
nucleus potentials, not very useful quantities at
present.

We return now to the construction of the poten-
tials in the impulse approximation. The optimiza-
tion of Gurvitz, Dedonder, and Amado has been
used to relate the two-body amplitudes to the Tma-
trix elements required in the projectile-nucleus sys-
tem. This method eliminates certain first-order
corrections to the impulse approximation and has
the additional advantage that the T matrix elements
are defined over the entire range of the projectile-
target momentum transfer, not just the two-body
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physical region of momentum q. This is important
for this case because the nuclear densities in
momentum space do not fall off fast enough to
make the large-q behavior of Eunimportant.

To complete the input to the optical potential the
appropriate relativistic nuclear densities are re-
quired. In this work two models have been used.
The first is based on relativistic mean-field theory
(RMFT) calculations of Horowitz and Serot. 9 The
second is a sum of Gaussians (SOG) form with the
parameters fitted to electron scattering data. ' For
this case the tensor density is zero and the proton
and neutron scalar and vector densities are all taken
to be the same. The latter model was used for the
comparison of relativistic and NR calculations.

The p-nucleus scalar and vector potentials gen-
erated by folding I' with the RMFT densities are
shown in Fig. 1 along with the nonfolded potentials
I' (q =0)p (r) for comparison. The real parts of S
and Vare both large and of opposite sign so that the
effective NR real central potential" (shown along
with the spin-orbit potential in Fig. 1) is small. The
imaginary parts of S and V combine to produce a
large imaginary effective potential. It is clear that

has a substantial range; the folded potentials
have less central strength and larger range than the
unfolded potentials. This is especially extreme for
the imaginary potentials. In ' C the rms radii for
Im(S) and Im( V) are 4.10 and 3.61 fm, respective-
ly, compared with an rms charge radius of 2.46 fm.
The large extent of the absorptive potential will

eliminate any possibility of orbiting phenomena as
recently discussed by Kahana and Sainio. '

The cross sections calculated with these potentials
are shown by solid and dashed lines in Fig. 2. The
agreement between the full RIA calculation (solid
line) and the data is excellent at all angles. The cal-
culation with nonfolded potentials (dashed lines)
poorly describes the Coulomb-nuclear interference
region and the position of the minimum. Hence
the phase of the amplitude and the size of the in-
teraction region are sensitive to these ranges. Our
calculations also agree well with the measured p-' C
total reaction cross sections. '

The spin observables A» and Q are shown in the
lower portion of Fig. 2. Note that the calculations
neglecting the force ranges are relatively structure-
less. Structure in the spin observables generally
depends upon shape differences between the spin-
orbit potential and the derivative of the central po-
tential. In proton scattering at medium energies
these differences arise largely from the nonlinear
terms in the effective NR potential. For this case
these terms are relatively smaller and the effects of
the ranges much larger.

Because the nonlinear terms in antiproton
scattering are smaller than in proton scattering one
expects smaller differences between RIA and NR
predictions. This is confirmed by the dash-dotted
curves in Fig. 2 which display NR folding calcula-
tions using the SOG charge densities for protons
and neutrons and p-nucleon amplitudes in the Pauli
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FIG. 1. RIA scalar and vector potentials and effective NR central and spin-orbit potentials using the RMFT densities
(Ref. 9). For the solid curves the range of the two-body interaction is included whereas it is omitted in the dashed
curves.
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In conclusion, the RIA calculations for anti-
proton-nucleus scattering are in excellent agree-
ment with the recent 46.8-MeV ' C data. With
respect to forward-angle cross sections the impulse
approximation is valid, even at this low energy.
The p-N T matrix has a long range in coordinate
space which must be included for even quantitative
agreement with the data and which is responsible
for the structure in the predicted spin observables.
Differences between the RIA and NR models are
small. This work is being extended to higher ener-
gies and other nuclei.
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form. In general a diminution of relativistic effects
is associated with strong absorption and weak spin-
orbit coupling as in the present case.
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FIG. 2. Differential cross section, analyzing power
(A~), and spin rotation (0) RIA predictions using the
RMFT densities with the two-body range included (solid
curves) and omitted (dashed lines) in comparison with
data. NR predictions are indicated by the dash-dotted
curves. RIA predictions using the SOG densities (see
text) are indistinguishable from the solid curves.
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