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The nonspectator contributions to the B-meson decdys are calculated with use of the mea-
sured ratio 7, +/7 o and the assumption f3/f3=mp/mg. We find Tp+/T =14 to 1.8.
From the measured values of B-meson lifetime, the semileptonic branching ratio, the ratio

I'(b— uev)/T(b— cev), and the e parameter, the constraing_so on Kobayashi-Maskawa an-
gles are evaluated and their implications for m,, |e’/e|, B°-B" mixing, and K — wvv are

presented.

PACS numbers: 14.40.Jz, 12.35.Eq, 13.20.Jf, 13.25.+m

The experimental! determination of the B life-
time has generated considerable interest.>~> That
measurement along with the anticipated discovery
of the ¢ quark could, at least in principle, yield
essentially a unique determination of the Koba-
yashi-Maskawa® (KM) parameters. This is expected
to lead to an important new framework for testing
the standard electroweak model especially as re-
gards CP nonconservation. For that strategy to
work some of the key quantities must be experi-
mentally measured and theoretically calculated to
the required precision. With that in mind, in this
work, we incorporate the nonspectator (NS) contri-
butions to the B-meson lifetime which have been
ignored in the recent discussions. We find that the
NS contributions to the B lifetime are such that

Tp+/T=14-138, (1

where 7., and 7, are the B* and B%(B°) life-
times, respectively. In addition to the experimental
value (i.e., the weighted mean) for the B lifetime, !

t5=(1.4 £0.4) x 10" sec, (22)
the following experimental results’ are included:
r'(b— wuev)/T(b— cev) < 0.05, (2v)
I'(B— evx)/T(B— all)=(11.6 +0.5)%, (2¢)
e=(2.227 £0.08) x 1073, (2d)
¢D+/7D0=2.2i8;2. (2e)

We study the resulting constraints on the KM
parameters (mixing angles 6,, 63, and the CP phase
8) and pursue the implications for the B%-B° mix-
ing parameter (i.e., AM/T po), for €', and for
K — mvv which are important tests of the standard
model.

The NS decays of neutral D mesons are assumed
to arise via the annihilation graph whose contribu-
tion is evaluated by use of the one-gluon emission

model.® We will attempt to minimize the model
dependence by using the now available experimen-
tal information (2e) on 7,./7 to constrain the
most sensitive parameter (i.e., fp/m,) that enters
in such a calculation.® We recall that in that model
the contribution (I'nsp) of NS decay (e.g.,
D%— s+d+gluon) via the annihilation graph is
given by?

FNSD=G1%ag+ as(m5/648w2)(f3/m,}), (3)

where agt =(f,+f_)%4, f+ being the usual
coefficients that incorporate QCD renormalization
effects on the weak Lagrangian. Thus, 7,./7
= (I'sp+Tnsp)/Tsp, [sp being the neutral- or
charged-D decay width via the spectator graph.!?
The experimental value (2e) then yields fp/m,
=20+0.5.

For B%(B°®) decays there are two types of NS
contributions. First there is the three-body decay
(e.g., B°— ¢ +u +gluon). As a result of the large
charm-quark mass one also has two-body modes
(e.g., B"— zu) via the annihilation graph. For the
three-body mode we have

€ 2.+ mi_ f§ x 77 |2
I'¥s= Gias asm‘rgl’clUmUw ., @

where the U’s stand for the KM angles in the usual
notation and P, is the phase-space correction that
depends on m,/mg.!! The numerical value of this
decay width is, of course, controlled sensitively by
S8/ my. We assume that

SB[ =mp/mg, (5)

or since® f2=12|y5(0)|* mg, Eq. (5) implies that
ly5(0)?>=[yp(0)|2 This is reasonable since in
the nonrelativistic approximation (that we are us-
ing), |¥pp(0)|? depends on the reduced mass
= my, = my. Furthermore, in the same approxima-
tion and with the one-gluon exchange potential, for
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the hyperfine partners of K, D, and B mesons one
has

(M2 — MZ) = (M2 — Mp) = (Mg, — M3).

The existing data on D(D*) and K(K*) support
this very well (better than 1%).12

Now all B decays can be cast in the obvious gen-
eric form

where I'$= GEmg/192m> and A,,A. are functions
of «y, fp, and phase space. So, since I' g, y is com-
pletely specified by A,,4. we introduce the short-
hand notation I' 5. y:(A4,,4.) which should be used
in conjunction with (6). Thus, for example, for
m.=1.5 GeV, my=4.5 GeV, and A (the QCD
scale) =0.1 GeV one has

I'5:(0.584,0.290); I'gp:(4.237,1.955), (7

Lo y=I3(A4,|Up, 12+ 4| Uy |?), (6) where I'§, I'sp stand for the electronic and the total
I decay widths via the spectator graph. Therefore,
(0.584/4.237) =14.1% < Rz =T §/T'sp < (0.290/1.955) = 15.5%. (8)

Thus if one considers only the spectator decays the
semileptonic branching ratio (R§g) ranges from
14.1% to 15.5% 13 which is too high compared to the
world average of (11.6 £0.5)% given in Eq. (2¢).
Furthermore, since to an excellent approximation
the semielectronic decays necessarily have to
proceed via the spectator graph the largeness of the
theoretical semielectronic branching ratio (7) com-
pared to experiment (2c) indicates that the nonlep-
tonic B decay width of the spectator model is an un-
derestimate and must be augmented. Once the an-
nihilation mechanism (described above) resulting
in two- and three-body decays is included then (for
the stated parameters and with fz/my=1.2)

[ = (Tgg+ g+ + T iag+):(4.615,1.955),
9)

[i%=(Tsp+T Qg0+ T {E50):(5.695,2.965).
(10)

Using (9) and (10) one finds for the semielectronic
branching ratio of B* and B°

12.8% < R, < 15.4%;
9.5% < Rgy <10.2%. an

So, the average semielectronic branching ratio be-
comes

11.2% < Rg= (RS, +R%)/2=<12.8%, (12)

which is now completely compatible with experi-
ment (2c). We thus find that treating the annihila-
tion graph via the model of Ref. 8 as a phenomeno-
logical tool to constrain fp/m, and extrapolating
[/ mg via Eq. (5) gives a valid description of decays
of mesons containing ¢ and b quarks.

Now we proceed to calculate the constraints on
the KM parameters and the implications for the
standard model. For the theoretical expression for
the total decay width we take!*S Tg'=(I''y

BY
1408

+T 4)/2, and we demand that 7p=Lz7"' be com-
patible (i.e., within lo) with the experimental
result (2a). Similarly, using the standard theoreti-
cal expressions for the other three physical quanti-
ties [and again demanding that they stay within 1o
of the experimental values (2b)—(2d)] we search
for constraints on the KM angles 65, 63, and 6 as a
function of the top-quark mass (m,). The resulting
lower and upper limits on these parameters as a
function of m, are shown in Fig. 1. The curves

sin 6,
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FIG. 1. Lower and upper bounds on KM parameters
(Ref. 15). Dashed lines are for By =0.33; solid lines are
for B,=0.50.
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show the limits for two values of By, '® i.e.,
B, =0.33 and 0.50. We recall that B,=0.33 is the
value calculated by use of SU(3) and current alge-
bra.l” I estimate the uncertainty in this number to
be less than 50%.!8

I have limited our considerations to m, < 65 GeV
since the constraints on the KM parameters (and
consequently on the physical quantities to be dis-
cussed below) become less stringent and therefore
less interesting if one allows for m, > my,.. We find
that m, > 45 GeV for B,=0.33 and m, > 30 GeV
for By =0.50. This is of course similar to the find-
ings of Ginsparg, Glashow, and Wise.? For the
range of 30 < m, < 65 GeV we find that the KM
parameters must lie in the narrow domain such that
0.015 = 6; =<0.045, 0.045 =0, =<0.095, and
37/8=<8 =< 157/16. In particular, for the range of
30 = m, =40 GeV where very preliminary indica-
tions for the top quark from collider experiments
are reported, one finds that the allowed domain of
KM parameters is even more severely restricted:
0.025=63;=<0.045; 0.06<6,=<0.095;, @/2<35
=<137/16.1° 1t is especially interesting that the
phase 8 is quite large (sind > 0.2 for m, < 65 GeV
and sind > 0.5 for m, < 40 GeV). This means that
the CP-nonconserving effects in B°(B°) and B*
decays could be quite substantial.?’

Figure 2 shows the allowed region for the ratio
TB+/TBO versus the ratio TD+/TD0 as implied by the
above model for the annihilation graph and the con-
straints of Eq. (2). From Fig. 2 we note that
14=< TB+/TBOS 1.8.

Another interesting parameter that depends sens-
itively on fz is AMg relevant to B%B° mixing.
Indeed, the quantity of direct experimental
relevance is the number of same-sign dileptons di-
vided by all dileptons that are obtained in e* e~ an-
nihilation via the production and subsequent decays

T T T T T T
“ ”‘r—‘r\m |
1.6 :
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TBo 14t i
1.2r B
14 1.8 2.2 26

TD+/TDo
FIG. 2. Lower and upper bounds for TB+/7'BO Vs
TD+/TDO (Ref. 15).

of B%B°. This is given by Rpz=[(AMg/T§)?%2]
which increases as* f§| U3 U,?|.?> Using the experi-
mental information (2) on B, D, and K decays and
Eq. (5) for fz we calculate Rg. The results are
shown in Fig. 3. For m, <40 GeV, Rp ranges from
8% to 30%.2!

Let us now briefly discuss the implications of the
present calculations for €’/e whose importance for
testing the standard model was first emphasized by
Gilman and Wise.??2 Recently Gilman and Hagelin*
have demonstrated that with the assumption of the
bag-model calculation of certain ‘‘penguin’’ opera-
tors, the lower bound on €'/e is proportional to
5,¢7835s. In the present model with the resulting
constraints I have evaluated the lower bound on
€'/€ as a function of m,. The result is shown in Fig.
3. We find that €/e = 0.01 for m, <40 GeV and
€'/€=0.007 for m,< 65 GeV.?! We recall that the
existing experimental limit is |e’/e| < 0.02, and an
experiment in progress could reduce this by about a
factor of 5.2

‘Finally, we pursue the implications for the reac-
tion K — 7wvv due to the constraints obtained on
KM parameters. Figure 3 shows the lower and
upper bound on B(K — mvv) as a function of m,.
The dependence on m, is rather inappreciable and

Rg
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FIG. 3. Lower bound on €/€, and lower and upper
bounds on B(K*— w*vv) and on Rg= (number of
dileptons of the same sign)/ (number of dileptons of the
opposite sign) due to B-B mixing (Ref. 15). Note that
B(K*— atvv)=T(K*— 7 vp)/T(K*— nle*v,).
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B(K — mvv) ranges from (0.6 to 2)x 1071021
Thus, in the standard model the rate for this reac-
tion is now severely constrained and the reaction
can therefore serve as a viable probe of new
phenomena.
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