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Scaling Behavior and Cluster Fractal Dimension Determined
by Light Scattering from Aggregating Proteins
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The size distribution n;(t) for systems with Smoluchowski aggregation kinetics is shown to
have the dynamic scaling form n;(t) —t ~g(1/t'), with 0=2 and z =1. This gives a light-

scattering intensity (I) —t', and an effective hydrodynamic cluster radius (R ) —t*to where
D is the cluster fractal dimension. We find that human immunoglobulin (IgG) monomers
exhibit Smoluchowski aggregation kinetics with z =1, and D =2.56+0.3, upon heating to
47-62 'C.

PACS numbers: 05.40.+j, 36.40. +d, 42.20.0g

The aggregation of monomers and the clumping
of clusters is of central interest in biology, immu-
nology, polymer and colloid chemistry, metallurgy,
and in all kinds of nucleation phenomena at phase
transitions.

Studies by Forrest and Witten of smoke-particle
aggregates, ' and computer simulations, make it
clear that aggregates are characterized by a Haus-
dorff or fractal dimension' D, by the relation
N = (r/Ro) . Here Nis the number of particles in-
side a radius r from the center of the aggregate and
Ro is the monomer radius. It follows that the
characteristic radius 8 of an aggregate is related to
the number of particles, i, in the cluster by

R; = Roil', with the cluster exponent, P, given by

P = 1/D. By electron microscopy one finds D
=1.5-1.6 for Fe, Zn, and Si02 clusters, ' D=2.3
for carbon-black aggregates, and D =1.7 for gold
colloids. Optical microscope observation of two-
dimensional clusters of small spheres' gives D
=1.6. Neutron diffraction" from silica particles
gives D =2.6. We show below that immunoglobu-

lin aggregates induced by heating form clusters with
a fractal dimension D =2.56+0.3. The observed
fractal dimensions D(d) are significantly less than
the spatial dimension d.

Witten and Sander simulate diffusion-limited
aggregation by letting "particles" do random walks
on a lattice. The particles stick irreversibly on con-
tact. Such simulations' s give D (2) = 1.7 and
D(3) =2.5. Generalizations where many mono-
mers are present initially and where the clusters
also may diffuse' ' generate ramified clusters with
D(2) =1.4-1.45 and D(3) =1.75—1.8.

Smoluchowski" introduced the equations for ag-
gregation kinetics:

dnk
nA; n X nkAk nl,

i+j =k

where n;(t) is the i-mer concentration, normalized
to the initial monomer concentration co, and

$;in; =1. The reduced time is t = est, where t is
the time, and the Smoluchowski diffusion-limited
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collision rate constant is ys =SmDORocoe. Here the
monomer diffusion constant is Do and Ro is the hy-
drodynamic radius. The probability that two collid-
ing clusters will stick irreversibly is e. Smolu-
chowski gave the collision matrix as A„"= (D;
+D~)(R; +R, )/4DoRo. Using the Einstein-Stokes

expression for the diffusion constant, D; = kT/
6mqR;, with viscosity q and R; = RoiP, we obtain

A;, = —,(i p+j i') (ii'+ji') (2)

Here we have assumed that the effective hydro-
dynamic radius of an aggregate is the same as the
radius used for the definition of the fractal dimen-
sion. No general solution of (2) exists. The kernel

A;J is only weakly dependent on P, and nearly a
constant. Smoluchowski made the simplification

A;~ =1 for all i and j, and gave the exact solution of
(1) when only monomers are present initially:

n;(r) =r' '/(1+i)'+' —r 'g(i/i')

We have also given in (3) the asymptotic form easi-

ly obtained from the exact distribution in the limit
of large times. Smoluchowski's solution has the ex-
ponents 0 =2, z =1, and the scaling function
g(x) =exp( —x). The scaling form of the size dis-
tribution expresses the fact that with A„=1, there
is no intrinsic characteristic cluster size. The scaling
form for the size distribution is the phenomenologi-
cal form expected to be valid for the more general
case where density fluctuations are important. The
average cluster size, i'=g, i2n;=1+2t —t', in-

creases with time and is the size scale of the aggre-
gation problem. Vicsek and Family' found that
two-dimensional simulations give 0 =2, and z
=1.4 +0.2, indicating that density fluctuations may
lead to deviations from results obtained from the
classical kinetic equations.

We have studied the aggregation kinetics of im-
munoglobulins' by quasielastic light scattering.
For clusters with R; ' » g = (4mn/A. ) sinO/2,
where the scattering vector Q is given by the
scattering angle 0, the index of refraction n, and
the laser wavelength A. , the scattering intensity (I)
may be expressed by

(I)/Io= X,n, i2= (1+. 2t) —i';
here Io is the initial scattering intensity. The asymp-
totic form follows from (3). Note that (I)/Io =i',
the average cluster size. The intensity correlation
function C(b t) = (I(0)I(hr) ), where itis the de-
lay time, measures the effective hydrodynamic ra-
dius (R) =kTQ /6m'(r). The de.cay constant,
(1), of the intensity correlation function is ob-
tained by fitting an exponential to C(ht), or
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equivalently by using a cummulant expansion.
We find that (R ) may be written as

(R )/Ro ——$,.i' n;/$, .i' Pn; —i' (5)

where we also give the asymptotic scaling form.
The asymptotic forms in (4) and(5) result when the
scaling form of the size distribution is used in the
evaluation of the sums. The precise result as t

~ is (R)/Ro [2/I'(3 —p)]ti'=y ri', where
r(x) is the gamma function. In the limit i 0, we
find (R ) /Ro = (1 +yot) i', with yo =4(1 —2 P)//3,

using a series expansion. We note that yo and y
differ at most by 5% for P in the range 0.3 to 1.
There is no simple general expression for (R )/Ro.
However, the form

(R)/R, =(1+yi)i' (6)

is consistent with our asymptotic results, and ap-
proximates (5) well. We have fitted numerical
results obtained by solving (1) with (2) for A;J, in
the range O~t ~5 corresponding to our experi-
mental range. We find P= —0.0215+1.056P, for
P in the range 0.3-0.5. To better than a few per-
cent (I) satisfies (4). If instead we use A;, =1, we
find P =P. The growth rate constant y is in the
range y to yo. We conclude that measurements of
(I) and (R ) as functions of time allow the direct
determination of the exponent z and the cluster
fractal dimension D =1/P, for systems with Smolu-
chowski aggregation kinetics.

We prepared monomeric IgG from pooled human
immunoglobulins (Gammaglobulin Kabi 16%, AB
Kabi, Stockholm, Sweden) by gel filtration. The hy-
drodynamic radius of IgG monomers is Ra=5.51
+0.03 nm, at 20'C in water, and the molecular

weight is 163000. Samples with 2, 4, 8, and 16
mg/ml monomers in a 0.2M NaCl, tris-HCl buffer
at pH=7. 6 were heated to 47, 53, 56, 59, and
62'C, and (I) and (R) measured as functions of
time. Heating causes these proteins to aggregate as
seen by the increase in (I) and (R). The process
is irreversible —it may be halted by cooling the
sample, and it resumes when heated again. The ex-
perimental results can be fitted accurately with the
forms (R ) /Ro = (1 +1 ~ t) i', and (I ) /Io = (1
+lit). We obtain aggregation rates r~ and I I,

which increase rapidly with temperature. The ex-
perimental results as a function of the reduced time
7=I ~t and I lt are shown in Fig. 1. A very satis-
factory data collapse of all our results demonstrates
that a scaling form of the cluster size distribution is
consistent with the experimental results. (I) in-
creases linearly with time and z =1. We find

r, =rg exp[ —hH'/(1/RTp 1/RT)],
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FIG. 1. (a) The reduced scattering intensity and (b)
the effective hydrodynamic radius, as functions of the re-
duced time v = I t, for heat aggregation of IgG monomers
at 2, 4, 8, and 16 mg/ml and at 47'C (circles), 53 'C (as-
terisks), 56'C (squares), 59'C (crosses), and 62'C
(pluses).

with an activation enthalphy for the aggregation
process AH"=120+5 kcal/mol. At the reference
temperature To =329 K, the radius growth rate con-
stant is I ~=pco, with p=0.18+0.01 ml/rng h,
which yields a very small value for the sticking
coefficient e= 1.1&&10 9. The exponent p=0.48
+0.05 must be corrected for the presence of

nonaggregating species before the cluster exponent
can be obtained. By heating monomeric samples to
62'C for six hours the aggregation process pro-
duces white precipitates. However, gel filtration and
ultracentrifuge studies show that (48 +5)% of the
IgC monorners form a heat-stable subclass, the H
fraction, which remains as monomers in the experi-
ments presented in Fig. 1. We have solved (2) and
(3) numerically and evaluated (I) and (R) by ad-

ding 50% nonaggregating monomers in (4) and (5).
The calculated results give a linear increase in (I)
with time, and (6) fits the numeric results as well as
before but P is larger: P=0.0153+1.198P. We
conclude that the clusters may be described by a
cluster exponent p=(p —0.015)/1.2 =0.39 +0.04,

or a fractal dimension D=2.56+0.3. It would
have been desirable to pursue the aggregation pro-
cess to longer times in order to get a more precise
value for D. However, with increasing (R) the
condition R;Q ((1 is finally violated and more
elaborate expressions than (4) and (5) are required.

The coagulation equation (1), with various ker-
nels A;~, is widely used in the discussion of poly-
merization and gelation. Some of these kernels,
such as the multiplicative form A;, =(ij) ', lead
to results qualitatively inconsistent with our experi-
ments. The combined effect of an activated col-
lision process as described by a statistical reaction
rate Kkj and of the diffusion-limited process (2) is
obtained by using A,J"=KJ/(1+KJ/A;~) as the ker-
nel in (1). 2 23 We have found that e =1.1 &&10

and conclude that the aggregation process is not dif-
fusion limited. This is consistent with our classical
value for z. Two recent papersi6, 24 are relevant to
the discussion of our results. The observed fractal
dimension D =2.56 is well above the value'
D(3) =1.8 for the diffusion-limited aggregation of
clusters with clusters. No simulations are available
for the case of very small sticking probabilities;
therefore we cannot determine if the clusters are
more compact than the existing simulations predict
because of molecular interactions or because of the
very low value of e. Recently Chen, Deutch, and
Meakin generated clusters with a cluster exponent
p=0.4, and determined the hydrodynamic radius

for the cluster, Rz =Roi ", from the calculated fric-~&~

tion coefficient, with the result p&=0.47 +0.01.
This result indicates that the observed D is less than
the cluster fractal dimension.

We conclude that quasielastic light scattering can
measure the exponents of aggregation kinetics
directly. IgG aggregation proceeds as a Smolu-
chowski process with D =2.56. For a better under-
standing of IgG aggregation, simulations with very
small sticking coefficients are required, and for
comparison with experiments the hydrodynamic ra-
dii for the aggregates should be evaluated.
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