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Frustrated Instabilities in Nonlinear Optical Resonators
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Instabilities in a nonlinear Fabry-Perot resonator and in an equivalent nonlinear ring reso-
nator with two component cavities are studied. A competition between the time-delayed
feedbacks causes a "frustration" in selecting an oscillation mode. The oscillation frequency
jumps discontinuously and at random as the ratio of delay times is varied. A number-
theoretic method has been successfully applied to elucidate the characteristics of oscillation.
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Chaotic instabilities in nonlinear optical resona-
tors have attracted much attention in the last few
years. Various phenomena such as period dou-
bling, ' destruction of torus, chaotic solitons, and
so on4 have been predicted, and some of them have
been observed in experiments.

In the present paper we demonstrate the possibil-
ity of an anomalous instability in a nonlinear
Fabry-Perot (FP) resonator and in an equivalent
ring resonator. These systems each have two time-
delayed feedback mechanisms. Competition be-
tween these feedbacks cause the systems to fall into
a state of "frustration, " in which there exist many
potential oscillating modes with subtly different sta-
bilities, and a slight change in the cavity length (or
delay times) enables an oscillation in a quite dif-
ferent mode. This mechanism is similar to that of
the frustration phenomena in thermal equilibrium
systems, in which competing interactions of order
parameter bring about a complicated number-
theoretic order in phase transitions. Number theory
is a powerful tool in the analysis of many physical
phenomena including frustration. One of the
aims of the present paper is to show that elementary
number theory is applicable also in laser physics.

The dynamics of a nonlinear FP shown in Fig.
1(a) is described by the Maxwell-Debye equations
in the medium8:
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index, and k the wave number. In Eq. (lb), y is the
relaxation rate of the nonlinear refractive index
n(tz), and g=(n2/~n2~)n(1 —e ') '. In Eqs.
(1) we have neglected the interaction between E+
and E due to the phase grating, assuming that it
diffuses quickly. Equation (la) together with Eq.
(1b) are integrated with respect to z under the
boundary conditions E+ (t, —lt) = R'i2E (t, —lt)
+A and E (t, l+ l2) =R' E+(t, l+ l2) at the two
mirrors, where A =Et(1 —R)' ztk~nz~(1 —e ')/
ot) ti2 is the amplitude of incident laser light. These
finally reduce to a set of equations of motion for
three variables; E(t) =—E+ (t, 0), the phase shift $
of the electric field across the medium, and an in-
tegral of the photon density tit in the medium, 9
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Here E-+ (t,z) are the electric fields at position z and
time t which propagate with light velocity c in the
two opposite directions. These have been defined
to be dimensionless by E += (k ~ n2 ~

(1—e '-)/

ot) tl E-, where er. is the absorption coefficient, n2

the quadratic coefficient of the nonlinear refractive

FIG. 1. (a) Fabry-Perot resonator involving a non-
linear dielectric medium, and (b) an equivalent nonlinear
ring resonator with two component cavities. Mirrors 1—4
are semitransparent with reflectivities R (I—3) and R'
(4)
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which are defined by

I
$(t) =gJ dz'(n(t+ (z(z' —lt)/cz')+ n(t —t~+ (li —z')/cz')),

p(t) =g t dz'(Re ' ' {E(t—ttt+2z'/c){ + e '{E(t—t~ —2z'/c){ ).
0

These equations involve multiple time delays; one
is the usual round-trip time delay tt =2(l+ lt
+ lz)/c, ' 3 5 and the others are due to the interac-
tion between the forward- and backward-prop-
agating fields via the medium. A further simplifica-
tion of these equations is possible in a similar
manner as for the ring resonator' in the limit of
large dissipation, i.e., 8=—Re '(( 1 with the ra-

tio of the injected energy to dissipation A 8 being
kept fixed. In this limit only the shortest additional
delay time tz = 2lt/c remains, and the reduced equa-
tions of motion are

y-'j= -y+y+ {E(t—t, ) {',

5 'q = —y+ IE(t —tz)l',

{ E(t) {'=Az(1+ 28 cos[p(t) —p, ]),

(2a)

(2b)

(2c)

where 5—= o. c/2. To extract the essential properties
we assume that the decay of Q is fast enough to fol-
low the motion of {El adiabatically. '0 Then Eqs.
(2) reduce to

y 0= —0+ IE(t —tt) {'+IE(t —tz) {'. (3)

If one of the two { E(t —t, ) { is discarded, Eq. (3)
together with Eq. (2c) is just the delay-differential
equation for a single-cavity nonlinear ring resona-
tor. ' Let us consider a ring resonator with two
component cavities as in Fig. 1(b). In this system
two feedback loops provide the time-delayed feed-
backs corresponding to { (Et —t t) {2 and to
{E(t—tz) {,so that its motion is exactly described
by Eq. (3), if the reflectivities of the mirrors are ad-

justed so that the feedback strengths are equal.
For a long delay time the time-delayed feedback

in general causes the stationary state to be unstable
above a threshold value of the incident laser inten-
sity A .' We investigate the stability of the
stationary solution of Eq. (3) for long delay times,
i.e. , r=e '=(ti+tz)y)) 1. Linearizing Eq. (3)
around the stationary solution @, and assuming the
time dependence e"' for the fluctuation, we obtain
an equation for the eigenfrequencies A. . We find
that the eigenrnodes of the fluctuation have fre-
quencies Qy=Iml»=(qm. 5»)2y/r spec—ified by
positive integers q, where 5» = q7r/r. As the con-
trol parameter A is increased, the mode q=q"
which first becomes unstable and thus determines

1
a&+ a2+. . .+ co~

a]pa2p ~ ~ ~ p ciog J f

where a, —= a, (Of ) are positive integers and co„
(0& cu„( 1) is the residual part. Among the ra-
tional numbers whose denominators do not exceed
q„—= q„(cu), the rational number best approximating
co is p„(co)/q„(cu) = (ai, . . . , a„ i) (Lagrange's
theorem). 'z Therefore it is quite natural to expect
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the frequency of self-oscillation is the one which
maximizes the function

+(q) = ( —)»+'cos(coq»r) cos5». (4)

Here co= {tt—t {z/{t t+ tz{ is a ratio of the delay
times (or the lengths of the cavities) which plays an
important role in determining q'.

'Il can be thought of as a net gain function of the
mode q which is the product of two competing
functions; qft —= ( —)»cos(coq»r) is the measure of
the degree of resonance of the mode q with each of
the two component cavities, and +2=—cos5~ is the
gain which is a monotonically decreasing function
of q. The closer 'Ili is to 1, the better the resonance
is and the smaller the loss of the mode is. If the ra-
tio of the lengths of the two cavities is rational, i.e.,
cu = P/Q (P = even/odd, Q = odd/even), the mode
q=Q resonates best with the two cavities. Deter-
mination of the mode closest to resonance is diffi-
cult when a& is irrational: Rational values of P/Q
approximating an irrational ~ are dense in its vicini-
ty. The larger the integer Q the better the approxi-
mation and the closer the mode q = Q is to reso-
nance. On the other hand, the larger q is, the
smaller the gain +2=—cosh~. Consequently the op-
timum mode q' is determined by the balance
between %'i and 'II2, i.e., the resonance with the two
component cavities and the gain.

To find the optimum mode q' for a given co, a
number-theoretic consideration is necessary. For
simplicity, we hereafter consider the problem of
maximizing {%"(q) { instead of +(q). This gives
correct results for —,

' of co in 0 & co & 1 and does not
significantly alter the essential features of the prob-
lern, as will be reported elsewhere. " Let us consid-
er the continued-fraction expansion (CFE) for co.'
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that the optimum q' is one of the q„. Indeed it is
found that the optimum q' which maximizes
le(q) I is the q„which maximizes lV(q„) l. So q„
can be found by minimizing 1 —l'Ir„l, which for
7 =—e » 1 means minimizing

tq „=[e't'q (~)1'+ [e' 'q (~) ]

The first term comes from 1 —cosh~ =5~2/2, and

the second term which is nonzero because of the ir-
rationality of cu comes from 1 —icos(cuq„7r) l~ (p„
—mq„)2 being well aproximated by q„+ t.

Next we discuss briefly the rule for generating
q„(co). It is evident from Eq. (5) that a„(tu) is
determined successively by the continued-fraction
transformation (CFT):

tu„= ciu„ t
—[tu„ t], a„(Cd) = [„ tl,

with cut = co, where [x] denotes the integral part of
x. q„(cu) is determined by the recursion relation'

q„(t ) = a„(~)q„ t(~) + q„,(~).

with qp(o)) =0 and qt(cu) =1. The CFT exhibits
strong mixing (and so ergodic) behavior since
idee„/dcu„ tl ) 1, in other words, the sequence
(a„(co)] is chaotic. Therefore, q„(tu), which is
"driven" by the "random force" a„(tu), is also a
stochastic variable sensitively dependent upon ~.

Now we return to the problem of minimizing Eq.
(6). Identifying q„+t(cu) with q„(cu) in Eq. (6) we
may estimate q' to be O(e 'i ). q„+t(~)
[=a„q„(co)] is however a random variable little
correlated with q„(cu), and the above conjecture is
correct only qualitatively. A more complete treat-
ment of the minimization of Eq. (6) can be
developed" with known results for the statistical
properties of the CFE.' We do not go into the de-
tail of the theory but only refer to the most impor-
tant result: For more than 90' of co in 0 ( cu ( 1, the
optimum q'(co) is the largest q„(td) which does not
exceed e '/ . Using this result we discuss the
characteristics of oscillation.

Let us consider the CFE for two neighboring
cut& m2 (cot irrational), i.e., co;= (at(co;),a2(co;),
. . .), and assume q"(cot) =q„(cot). If cuz is close
enough to cot, ak(cu2) = ak(cdt) for all k ~ n, so that
q'(cuz), i.e. , the maximum qk(cu2) smaller than
e ', should equal the one at cut, i.e. , q'(o»). As
cu2 is moved away from cot, the ak(cu2) successively
shift from the values ak(cot) in the order
k = n, n —1, . . . , and at some critical value
tu2=cot+Acu, q"(o&z) jumps from q"(~t) to some
other value. The characteristic width of Ace is es-
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FIG. 2. Oscillation frequency 0/27r je as a function
of co for various values of r (d) is an enlarge. ment of (c)
for 0.15 & co ( 0.16.

timated by considering that when q„(cut) exceeds
the nth iterate of a small interval Ace by the

CFT is amplified to O(1). This gives b, co —e
=2/r. Because of the chaotic behavior of the se-
quence (a„(co2)), a„(cd2) becomes uncorrelated
with ak(cut) for k~ n as l~t —

cu2l is increased
beyond Ace, and so similarly q'(cu2) becomes un-
correlated with q" (cut). Therefore, the frequency
of oscillation 0 exhibits singular behavior in the
limit v » 1; as cu is varied on a scale of ~ ', 0
changes stepwise, and moreover the height of steps
is a random function of co on a scale » ~ '. The
statistical distribution of 0 can be evaluated by use
of the statistical properties of the CFT." It is given
by

P(A)~H(1 —II/gati m)ln(1+ fI/e' 7r)/0 (9)

where 0(x) is the Heaviside step function. Hence
the average frequency of oscillation is proportional
to (delay time) 'i2, i.e. , II,„=(1242(21n2 —1)/
7r}[y(tt+ t2)] ', which differs greatly from the
usual dependence, i.e., (delay time) t. 's s Figures
2(a)-2(c) show the oscillation frequency 0 as a
function of cv, which is obtained numerically by
maximizing the exact gain function Ir (q). As is ex-
pected, A(cu) becomes complicated as r is in-
creased, and in Fig. 2(c) 0 (cd) looks as if it is quite
random. Figure 2(d) is an enlargement of Fig.
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2(c), which indicates that the random variation on a
coarse scale consists of uneven steps on a fine scale.

In conclusion, we have shown frustration
phenomena in the instabilities exhibited by models
of a nonlinear Fabry-Perot resonator and of an
equivalent nonlinear ring resonator. The competi-
tion between multiple time delays causes frustration
in the selection of the most unstable mode. Such
phenomena may be intrinsic in unstable optical sys-
tems with compound cavities. ' We note that there
remains unsolved problems within the framework
of linear stability analysis: Increasing A (for a fixed
co), we observed the singular oscillation behavior
seen in Fig. 2. Is the same behavior observed as co

is changed for fixed 3? Are the discontinuous
jumps accompained by hysteresis, or not? To
answer these questions experimental verification is
strongly desired. An experiment ~ould be more
easily performed in a hybrid bistable device with
two time-delayed feedbacks.

The authors are very grateful to P. Davis for use-
ful advice in preparing the manuscript.
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