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Calculation of Weak Transitions in Lattice QCD
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We propose the use of Monte Carlo simulations of QCD to evaluate hadronic matrix ele-
ments of local operators encountered in electroweak and grand-unified-theory transitions.
Preliminary Monte Carlo estimates are made of the AS = 2 matrix elements responsible for
the KL-Ks mass difference and the AS = 1 operators believed to explain the AI = —, enhance-
ment.

PACS numbers: 11.15.Ha, 12.35.Eq, 13.25.+ m, 14.40.Aq

In any attempt at an accurate estimate of the
weak-interaction amplitudes, the difficulty lies in
the hadronic matrix elements, not in the short-
distance behavior of the gauge theory. The initial,
intermediate, and final hadronic effects are the
realm of nonperturbative QCD for which only intui-
tive and clever phenomenological estimates are
known (quark models, bag models, etc.).

In principle, lattice gauge theories allow rigorous
evaluation of nonperturbative QCD effects, when
simulated by Monte Carlo techniques. ' In this
Letter we propose to extend the use of Monte Carlo
simulations of lattice QCD to evaluate the hadronic
matrix elements that arise in weak processes. For
the lattice cutoff m/a between the W mass and the
QCD scale AQcn (Mg » m/a » A&co), the lat-

tice provides a natural separation between hard- and
soft-momentum physics. The renormalization
group is used to sum the hard gluons into the coef-
ficients of an effective theory, while the soft-gluon
contribution to the matrix elements is summed to

~

all orders by the lattice calculation.
Some of these matrix elements are known experi-

mentally with high precision and their evaluation
provides as good a test of QCD as the calculation of
the hadronic spectrum. Conversely, once confi-
dence is gained in these techniques, it becomes pos-
sible to settle major questions in standard weak-
interaction phenomenology such as the Ko-Eo mix-
ing, the AI = —,

'
rule, etc. , as well as to make new

predictions for future measurements such as the ra-
tio e'/e in CP-nonconserving decays, the proton
lifetime in grand-unified theories (GUTs), etc. To
make this program more precise, we give a brief
description of the phenomenological picture for two
cases.

AI = —,
' rule. —The AI = —,

'
decay amplitudes for

E ~7t are known to dominate over the AI = —,

decay amplitudes by a factor of about 20. The ef-
fective Hamiltonian for the AS = 1 weak interac-
tions with four quark flavors and without strong-
interaction corrections is, to first order,

(4GF/J2)sin&, cos&, [dl youl uLy„si —dLy~ci c„y~si j,

where G&- —I/M&. In order to include the QCD effects down to a scale p, (M~, the renormalization group
can be used to sum the leading logarithms between p, and M~. Further, for p, ( m„ the effective Hamil-
tonian after integration out of the effects of the charm quark is4

HAP(
=' ——$ C (Ma/p„m, /p, )0 (x), (2)
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with known coefficient functions C and the six operators

Ot = sLy„dLuLy~uL —sLy„uLuLy„dL, 02= sLy„dL(uLy„uL + 2dLy„dL +2st y„sL) +sLy„ut ut y„dL,

03= sLy„dL (uLy„ut +2dt y„dt. 3st y„sL) +st y„uLut y„dL,
(3)

04= sLy„dL (uLy„uL —dLy„dL) + sLy„uLuLy„dL, 0&= sLy„t'dL (uqy~t'utt + dtty„t'dtt + stt y„t'stt ),

06 = sL y„dL (utt y„utt + d~ y„dtt + stt y„stt ) .

The subscripts L and R designate the left [—, (1 —y&) ] and right [ —,(1+y&) ] projected Dirac fields, respec-
tively. The color SU(3) matrices t' are normalized to Tr(t'tb) = 25'~. Shifman, Vainshtein, and Zakharov4
have conjectured that the new ( V —A) ( V+ 2) operator structure in 0& and 06 is responsible for the AI = —,

enhancement. On the basis of partial conservation of axial-vector current (PCAC) and vacuum insertion hy-
potheses, they find an enhancement factor of 70 for the ratio of matrix elements (m ~Os~K)/(vr~Ot~K).
This is still too small to explain the AI = —, rule because of the small coefficient 05.

Ko-Ko mixing. —The second-order Ko-Ko matrix element is responsible for the Kl -Kz mass splitting. As a
result of the Glashow-Iliopoulis-Maiani mechanism, the two-8'-exchange graph gives zero except for a term
proportional to m, —m„; for p, ( m, and up to leading logarithms the AS = 2 effective Hamiltonian leads to a
mass difference

mt', —mx, =
z 2

cos 8, sin H, C (KO~O
=

~Ko),s &2 4~ Mwsin~w
' ', p

(4)

where O~s=2(x) =dL (x)y„sL(x)dL(x)y„sL(x). The effects of the heavier b and t quarks have again been
neglected. Gaillard and Lee estimated this matrix element and then made a remarkably good prediction of
the charm quark mass before its discovery. However, Donoghue, Golowich, and Holstein argue that the
matrix element is about —,

' of the Gaillard and Lee value on the basis of PCAC and SU(3) symmetry.
Lattice formulation and evaluation of the matrix elements All latt.i—ce quantities are evaluated as a function

of the bare coupling go and the bare mass parameter K for the Wilson (r = 1) fermions. For a given go and g
the meson mass m (~,go) is calculated from the two-point correlation function as

lim X(yt (x, r)y (0, 0)) =
T~ OO 2m' aL

where g-„$~(x, r) creates a zero-momentum meson state with the quantum numbers of the E meson. The
meson correlation function is evaluated as a product of the quark propagators, S(x, 0;A), averaged over the
gauge configurations, A „(x). On a lattice with spatial dimensions aL, the plane-wave-state normalization is
taken to be (K, p ~K, p') = 2E~a'L'5 „where the momentum components are restricted to be discrete in-

P P

teger multiples of 27r/aL in the interval —7r/a & p & m/a. We suggest that the Ko-Ko transition matrix ele-
ment be calculated from the ratio of the vacuum processes

g„» ( @k(x, r t ) O,att
= ' (0)@» (y, r 2) )

lim
X„(yx(x, rt+r2)@~(0, 0))

(aK IOO" ='IKo)

4Ks Kd2M~

where 0„« is written in terms of the dimensionless lattice fermions (a'/2~)'i P(x). This result and Eq. (6)
are derived by inserting the eigenstates of the transfer matrix e 0' between the operators; in the limit

~, only the lowest state survives. For off-diagonal matrix elements in Eq. (6) the wave functions do
not cancel, but they can be calculated from Eq. (5). In the case of the E m vr amplitudes we shall simplify
the calculation by using PCAC to remove one of the external pions, and consider the ratios of the expecta-
tion values of the AS = 1 operators, to avoid the problem of wave-function normalization.

Beyond the usual finite-lattice effects, there are corrections due to the mixing and rescaling of the matrix
elements of the renormalized operators OI relative to the bare operators OP«with the lattice cutoff. For ex-
ample, we have

(KO~OI~KO) =Z
p (at go)(KO~OPtt~KO).
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Renormalization-group scaling gives Z as a perturbation expansion in g0,

Z p=5 p[1+Pog(~) log(7r'/p, 'a')]' '+0(g(~)),

and guarantees that the limit a 0 is finite and in-
dependent of the renormalization point p, for physi-
cal amplitudes. However, in practice, we have a
nonzero lattice spacing. So we choose p, ——'7r/a,
cognizant of the fact that perturbative corrections to
Z = 1 in combination with better Monte Carlo data
are important for accurate physical predictions.

Analysis and results. —Our numerical results were
obtained on a 6 & 10 lattice with the bare coupling
set equal to go =1.0. Six independent gauge con-
figurations, each separated by 600 sweeps after
5000 thermalization sweeps, were generated by use
of the pure gauge action (quenched approxima-
tion). The quark propagators were calculated for
periodic boundary conditions by the Gauss-Seidel
method at K = 0.145, 0.147, 0.1485, and 0.15. The
Wilson parameter r was set equal to 1. The light u

and d quarks were considered degenerate and we
used the naive currents J =

qL (x)y qi. (x). On
each of the six configurations the quark propagator
was calculated for a single starting point selected at
random. This restricts computations to matrix ele-
ments where all quark lines originate (or end) at
this single point. For the E0-ED transition, the full
operator can be evaluated but for the matrix ele-
ments (7r lO lK), we must normal order the
operator (:0: ) dropping the diagram with a con-
tracted quark line,

QQ=S(0, 0;A),
I I

because of the presence of a spectator quark going
from E to m.

The Monte Carlo results for the K~ 7r transi-
tions are summarized in Fig. 1. A large enhance-
ment of (n l:Os. lK) over (7r l:Ol. lK) is observed.
Before these results are extrapolated to the physical
quark mass, i.e., Kphy

'
1

the difference between the
normal-ordered and the full operators has to be tak-
en into account. In the limit m =mz=m 0,
PCAC implies that the matrix elements of all opera-
tors 0 vanish as m . This same behavior is also
required of the (V —A)(V —A) normal-ordered
operators:0&. to:04., since both the original and
the Fierz-transformed expression have vector in-
dices. By Lorentz invariance the matrix elements
of these normal-ordered operators are proportional
to p k, which in our analysis is evaluated at
p = (O, m„), k = (O, mx) to give a factor m mI~.
For the (V —A)(V+A) operators 0& and 06 the
relation between the full and the normal-ordered

50—
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FIG. 1. The ratios of the (srl:02 5 6. lK) amplitudes
relative to (ml:Ot.'lK) as a function of the light-quark
mass parameter K extracted from the time intervals 7 i ——2
and T 2

——3 (circles), ~ i = ~2 = 2 (triangles), and ~ i = v 2 = 3
(crosses}. The amplitudes for 03 and 04 are identical to
02.

part is

(7rlOslK) = (~l:Os:IK) + (7r lfpds lK). (9)
I I

Apparently the second term goes to a constant in
the chiral limit. In this case the normal-ordered
part also has a leading constant piece, and the ratios
(:Os'.)/(:Ol.') and (:0&'.)/(:Ot.') will diverge like
1/m m„ in the chiral limit. This effect, which is
evident in our data (Fig. 1), is also exactly repro-
duced in strong-coupling calculations. Therefore
the extrapolation in the pion mass, i.e., a multipli-
cative factor of 4 coming from the ratio of the pion
mass at K=0.15 to its physical value, results in a
ratio (:Os.)/(:Ot'. ) —200. On the other hand the
direct extrapolation of our data for (:0&.)/(:Ot. )
by fitting to m —(K K) ' yields ~, = 0.153,
which is in disagreement with the value K, = 0.156
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TABLE I. Lattice results for the K -K transition ele-0
—0

ments [left-hand side of Eq. (6)] as a function of the
light-quark mass parameter K and the time separation.
The finite-size corrections for the propagator in the
denominator 1+exp[ —m [L —2(Tt+rq)]) have been
included.

~i=1, 72 ——1 Ti 2 72 2 7$ 2~'T2 —3

0.145
0.147
0.1485
0.15

0.86
0.79
0.73
0.68

0.32
0.29
0.25
0.21

0.22
0.2
0, 17
0.16

(Kazoo
=

iKo) =0.04m~/a'. (10)

With the lattice parameter a satisfying am& —1 at
K = 0.15, this value is not inconsistent with the
phenomenological estimates of 0.08mI44. (Gaillard
and Lee ) or 0.025m+ (Donoghue, Golowich, and
Holstein6). Obviously, our prediction for mz

L—mz is very uncertain as a result of large sys-S
tematic errors from finite-size effects, as well as the
strong sensitivity on ~ and a dependence of the
mass scale.

To conclude, our preliminary analysis of the
AI = —,

' rule and the KL-Kz mass difference shows

obtained from the pion-mass calculations. In
spite of the obvious shortcoming of our restriction
to normal-ordered diagrams, we are encouraged by
the evidence for a strong dynamical enhancement
in these contributions to the penguin diagrams. A
complete evaluation of the matrix element is being
pursued for future publication.

An error estimate is as follows: In Fig. 1 we
show the effect of changing the time separation
between the operator and the states. In a large lat-
tice (required for convergence in time separation)
the absolute numbers will change but we feel that
the large enhancement will survive. We also
binned the six configurations into two sets of three
each. The individual matrix elements had up to
50/0 variation but the ratios were stable up to 10%.

The results for the dimensionless K -K matrix
element [left-hand side of Eq. (6)] are shown in
Table I. The numbers are very sensitive to both ~
and the time separation. For illustration purposes,
we quote the result for ~ = 0.15 and v

&

= v 2
= 2:

how Monte Carlo techniques can be used to com-
pute weak effects in hadronic processes without
recourse to phenomenological models. It is impor-
tant to extend this approach to GUT-scale physics
to compute, for example, proton decay from first
principles.
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