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Description of Quantum Noise by a Langevin Equation

H. Metiu
Department of Chemistry, University of California, Santa Barbara, California 93106

and

Gerd Schon
Institute of Theoretical Physics, University ofCalifornia, Santa Barbara, California 93106

(Received 16 April 1984)

We derive an equation of motion for a fully observed classical system which is coupled to a
quantum companion whose degrees of freedom are only partially observed. Our purpose is
to discuss the nature of the quantum noise by using a generalization of the Langevin equa-
tion.

PACS numbers: 05.40.+i, 03.65. —w

Both the question of the ultimate sensitivity of equation were given in the literature. 4 5 However,
measurement devices' and that of detection of doubts regarding its validity, and questions related
quantum behavior on a macroscopic scale require to its interpretation outside the classical regime,
an understanding of the properties of quantum have not been completely settled. One of the prob-
noise. It has been suggested that quantum noise lems is that the noise appears to provide energy
can be accounted for through the phenomenological even at zero temperature. Such behavior is unac-
Langevin equation3 ceptable since at absolute zero the system causing

mj+ytl+8 V(q)/tiq =((t) (1) the noise must be in its ground state, and no energy

e particle coordinate q is acted upon by deter- can be extracted from it. Furthermore, results ob-

ministic forces (including a damping term propor tained from (1) and (2) depend on the magnitude

tional to the velocity) and by a Gaussian stochastic of an arbitrarily imposed high-frequencY cutoff.

force. The quantum nature of this random variable Since in a well-formulated theory the system that is

is reflected in its correlation function, which in responsible for dissipation and noise has a natural

accordance with the (quantum) fluctuation- cutoff frequency, which is the frequency of its
highest elementary excitation, there should be no
need to impose it arbitrarily. Finally, we mention

J" dt &4«)&(0)) e"'=yir~coth&~/2kT (2) that the noise is correlated on a time scale given by
It/kT, and these correlations have to be taken into

standard Gaussian noise, with (g ( t) g (0)) Microscopic models designed to produce Eq. (1)
f h t L

' in the appropriate limit are typically based on the
Hamiltonian

P;2 M;Q,2Qi20= P + V(q)+ Xf(q)Q+ X
' + (3)

2m , 2M;

representing a particle coupled to a set of ¹independent oscillators. If the initial state of the oscillators is in-
completely specified (e.g. , if they are in thermal equilibrium at a temperture T) and/or if their final state is
not measured, they provide quantum noise in the classical equation for q (t).

In what follows we want to point out certain general features of the quantum noise problem viewed as the
problem of deriving the equation of motion for a fully observed classical system (i.e., the particle) coupled to
a partially observed quantum companion (i.e. , the set of oscillators). These features are general and the
model (3) is used for illustration only. We will arrive at a description similar in spirit to that of Eqs. (1) and
(2) but differing in the fact that we more explicitly keep track of the properties of the quantum companion.
This elucidates the meaning of the quantum noise, and avoids the shortcomings of the phenomenological
theory mentioned above.

Since we found it useful to use the classical Langevin equation as a guide, we outline briefly its properties.
We start from the equations of motion corresponding to the classical version of the Hamiltonian given by Eq.
(3), solve exactly for Q(t), and, using this solution, eliminate Q (t) from the equation for motion for tI (t).
This leads to the Langevin equation

~t(&)+ — r (e(t)) J sin (iii r)f'(q(r)) r= —df(q(t))oo(t) =t(t)9V t 8
Bg BQ MQ &I 9g

(4)
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where

Qp(t) = [Q( rt)/II]sinO(r rt)+ Q(t~) cosA(r rt).
To simplify the notation we use one oscillator only;
the extension to %oscillators is straightforward. In
fact, if we want to produce genuine dissipation we Q
have to couple to an infinite set of oscillators. By e
choosing their spectral density and coupling as ln

~ [ef, (q)/eql'

independent of q, we can model the velocity-
proportional damping of Eq. (1).s On the other
hand, the Hamiltonian (3) may be used to model
the interaction of a particle with a surface, distorted
by thermally excited phonons. In this case
f, (q) = —N 'i26 V(q)/Bq and the spectral distri-
bution is that of the phonons (e.g. , a Debye spec-
trum).

In those cases where we know only the probabili-
ty that prior to the collision Q(tt) and Q(tt) have
given values, the quantity ((t) is a stochastic vari-
able. If at t= t~ the oscillator was in equilibrium
with a thermostat, then g(t) is a Gaussian variable
whose correlation function satisfies the classical
limit (since the oscillator is classical) of the
fluctuation-dissipation theorem.

A suggestive, but unsatisfactory, method to
quantize Eq. (4) is to retain classical dynamics (i.e. ,
the form of the equation of motion) but to describe
the statistical properties of the random force by use
of quantum statistical correlation functions. %e
call the resulting equations the quantum statistical
Langevin equations (QSLE). This amounts to the
use of, for the correlation function of Qp(t), the
form

—,
' (Qp(r) Qp(o)+ Qp(o) Q, (i) &

= (h/2MB )coth(t II/2kT) cos(0 t),
which satisfies the general (quantum) fluctuation-
dissipation theorem. The QSLE is very similar to
the phenomenological equation. However, the fre-
quency of the oscillator (or, for many oscillators,
the largest oscillator frequency) appears as a natural
cutoff.

14

To understand the meaning and the limitations of
SLE we go a step further and suggest a Langevin

quation in which quantum dynamics effects are also
corporated (referred to in what follows as the

uantum dynamic Langevin equation). This should
ave the form

mq +8 'V/Bq =~,~((q}). (5)
The key element here is the new force wzz((q})
which is a functional of the particle trajectory (q (r)}
and depends on the initial and final states I and Fof
the quantum companion (i.e. , the oscillator, in the
simple model). This is a Langevin equation since
we do not fix the initial or the final state of the
quantum companion; all we know about them is the
probability Pz that prior to the collision the com-
panion is in the state I, and the transition probabili-
ty Wq F((q}&z) that the collision with the particle,
moving along the trajectory (q}&z, will take the
companion into the state F. The average value for
any mechanical quantity A (q, q) characterizing the
classical particle is

(A) = XXJ'r ~r- FA ((q}e' {q}e').
F I

Note that we must pick I and F, determine ~~qF,
solve Eq. (5) to get (q}&F, evaluate P, and
8'q F((q}&F), and calculate (A) from Eq. (6).
This is reminiscent of the classical theory except
that the noise source is no longer the uncertainty in
Q(t&) and Q(t~). In the quantum case there are
two different noise sources: a statistical one which
appears through Pq, reflecting the uncertainty in the
initial state I, and a quantum dynamical one which
appears through W&F, reflecting the quantum
mechanical uncertainty of whether a quantum tran-
sition from a specified initial state I to a final state F
occurs. This second noise source has no classical
analog.

The new force M q~((q}) is required by rather
general considerations: If the collision takes the
quantum companion from I to F, there must be a
force to slow down the particle such that energy is

I conserved according to

—,
' mq(tz) + V(q(tz)) ——,

' mq(rt) —V(q(rt)) =h Q(nq —nF) (7)
Here t~ and t2 are prior and post collision times, respectively, and nq and nF are the initial- and final-state en-
ergy quantum numbers of the companion. Thus we must have different "Newton equations" for each con-
ceivable quantum transition of the companion.

Probably there is no general systematic and rigorous method for deriving an equation of the form (5),
since there is no hybrid mechanics in which some degrees of freedom are treated classically and others quan-
tum mechanically. Here we propose a method for obtaining an expression for & zF, based on Feynman's
path-integral formulation. Other, more heuristic procedures, were outlined elsewhere. '
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%e start with the time-dependent Green's function written as a path integral:

jqxpjexpj —iH(ix —i, j/qjjq, ,/j =J 8' jqjex pjid e/q j/qi /qle( jqj),
q&

with

K (Ixjqj) = /de/xp /xQ jfxdQq(gj J N( L/je xpijS( qQ j/Xj.

Here Pt(Q) —= (Q I 1) and qtjz(Q) = (Q IF) are the initial- and final state wave functions of the companion,
and So(q) and S(Q,q) are the action of the particle and of the companion interacting with the particle,
respectively. If we now write the complex amplitude Ktr((q) ) in "polar" form,

K,F((q)) = Wttt2„({q})exp[i''t~((q})], (10)
we can regard &tz((q) ) as an addition to the particle action So({q)). In the spirit of the work of Feynman
and Hibbs9' and of Pechukas and Davis, b we postulate that the generalized Hamiltonian principle follows
from the stationary phase condition

5[S,((q) )+&„((q})1/Sq(t) = 0.

This Hamilton principle leads to

mq+8 &/Bq =&Xtp((q) )/~q(t). (11)
Moreover, since Kt~((q)) is the probability amplitude that, under the influence of the trajectory (q), the
companion undergoes the transition I F, the quantity Wz F({q)) appearing in Eq. (10) is identified with
the transition probability appearing in Eq. (6).

For the model described by the Hamiltonian (3) these quantities can be computed by standard methods. 9'

%e obtain

II't- p((q) ) = exp[ —l~((q) ) I'» Ift~(q) I'. (12)
with

1 x t 1

mill( 1fF, fly )

ftF = (nz!) ti2(nt!) ti~ X r![in({q))] ' [in((q) )']
r 0

and

n({q)) —= (2Mii Q) '
Jl exp( —iQr)f(q(r))dr.

The equation of motion corresponding to Eq. (11) is

mq(t) + —(MQ)av, af(q(t)) tJ! dr sinQ (t r)f (q (r)) =—qtF(t).
9g Bq 1

with

%/F(t) = (2MQ) t &f(q(t)) dr sinQ(t —r)f(r)
Bq

t

&& 1 —(np —nt)&MQ dr2 draff(q(r2)) f(q(rt))cosQ(r2 —r, )t) t)
q

(13)

(14)

(15)

We have written the Eq. (14) [i.e. , we split Ptp' of
Eq. (5)] so that the left-hand side looks exactly like
the friction appearing in the classical Langevin
equation; correspondingly one can interpret ritz(t)
as a quantum generalization of the random force
g(t) Howeve. r, there is no compelling way of split-
ting &~I+ into friction and random force. For exam-
ple, one may argue that the first term of rttt;(t) is
not stochastic since the only stochastic variables are
nr and nF. Moreover, we observe that it is the last
term in ritF(t) that accounts for the energy loss by
the particle, and hence the dissipation; therefore

one might want to call that term friction.
It is straightforward to show that the equation of

motion has all the general properties that we have
requested when we commented on the general
equation, (5). The conservation laws are satisfied.
In particular, if the particle-oscillator interaction
vanishes at tt and t2 we can integrate Eq. (14) and
recover the energy balance Eq. (7). The work done
by the "classical friction" term, appearing on the
left-hand side of Eq. (14), is exactly canceled by the
work done by the first term of qt~ [Eq. (15)]. We
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also mention that in the limit nq = 0, the general ex-
pression Wtz in Eq. (12) reduces to a Poisson distri-
bution in nF with average ~u(qI ~

.
Another interesting feature of the force & IF is its

dependence on the whole particle trajectory, in an
apparent violation of causality. Ho~ever strange,
this feature is required by the fact that we have
fixed the final state of the quantum companion,
which, through the energy conservation condition
Eq. (7), fixes the final velocity q(t); thus in order
to guide the particle to its correct final velocity the

force & IF must be a functional of the whole trajec-
tory. In practical applications this means that the
trajectory corresponding to a fixed set (I,F) must
be computed self-consistently, either by a succes-
sive iteration of Eqs. (14) and (15), or by calculat-
ing the trajectory with the aid of the variational
principle preceding Eq. (11).

Finally, the most interesting features, as far as
quantum noise is concerned, are the statistical prop-
erties of qtF By. using the definition (6) of the
average we find that (qtF(t)) =0 and, neglecting
terms which vanish upon time averaging,

(~tF«)~tt-«')) =
2M„

it tif(q ( t) ) tjf(q ( t')), itt ncos[A (t —t') ] coth
t)q gQ

(16)

Again, the correlation function of a system coupled
to N oscillators is the sum of N such terms. In par-
ticular, with the choice of coupling and spectral
density as given in the text after Eq. (4) we recover
the correlation function. '2

The quantum dynamic Langevin equation resem-
bles in many aspects that of Koch, van Harlingen,
and Clarke, Sebastian and Schmid. The latter
two follow Feynman and Vernon' and consider an
average functional, which takes into account the ef-
fect of the quantum companion on the observed
variable. Within a semiclassical approximation, this
functional is equivalent to an equation of motion,
containing a Gaussian random variable with a quan-
tum correlation function. This stochastic force
simulates the effect of the companion in an average
way, but does not depend on the initial and the final
state. The nature of this "average" is ambiguous
and we are unable to understand it fully, while in
the procedure suggested here the origin of the noise
is directly related to the dynamics of the excitation
of the quantum companion and the fact that the
latter is incompletely measured. Furthermore, the
present formulation quarantees that the conserva-
tion laws are satisfied; in particular, the system can-
not extract energy from the companion at 0 K.

We emphasize that the general features of quan-
tum noise introduced here go beyond the Hamil-
tonian (3), which was used for illustration and to
make connection to past work. If Eq. (3) is used,
numerical calculations are feasible, ' and we plan to
publish them shortly. Beyond the quantum noise
problem the model discussed here is useful in deal-
ing with atom-surface scattering and trapping by
phonon or electron-hole pair excitations, ' in the
low-temperature limit when quantum effects be-
come important.
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