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The range of upper critical fields, as deduced from the field-dependent width of resistivity
curves, reflects the structure of inhomogeneities in a superconductor. Within a Gaussian
model of conductivity fluctuations the maximum upper critical field as a function of tempera-
ture yields both the magnitude of the conductivity fluctuation ga-/o. and the spatial range I;„h
of the inhomogeneity. Good fits to the data are achieved from l;„h —((0) and go-/a. —4.

PACS numbers; 74.70.Dg. , 74.60.Ec., 74.70.Nr

Spatial inhomogeneities can strongly influence
superconducting properties when their characteristic
length scales are comparable to the superconducting
coherence length. The resulting deviations from the
universal behavior of ordinary (weak-coupling) su-
perconductors occur in three classes of materials:
in metastable systems such as metallic glasses and
alloys where the magnitude of the deviation seems
to correlate with the metallurgical treatment, ' in
synthetic structures such as superlattices, ' and in
granular samples and segregation systems which
contain well defined superconducting clusters em-
bedded in a dielectric medium or a normal metal.

Theoretical studies have focused on the granular
systems where the influence of disorder on super-
conductivity can be described by percolation
models. 4 However, models assuming well separat-
ed, weakly coupled superconducting regions cannot
be applied to systems where the properties vary
smoothly on the atomic scale. This is the case in
many metastable systems and probably also in many
superlattices as a result of interdiffusion.

This paper (1) describes the results of a micro-
scopic theory of superconductors which includes the
effects of slowly varying inhomogeneities and (2)
provides a method of analyzing related experi-
ments. The theory exploits the temperature depen-
dence of the coherence length g(T). Near T, the
coherence length is very large and the supercon-
ducting properties are determined by the averaged
properties of the sample. As the temperature is
lowered inhomogeneities on the length scale of
g(T) can be resolved, leading to deviations from
averaged properties. The temperature dependence
of the observed deviation will reflect the type of in-
homogeneity and its length scale.

Figure 1 illustrates both the experimental results
and the methods proposed in this paper for under-
standing them. The actual experiment is to mea-
sure the resistivity versus temperature for a set of

magnetic fields. The circles denote the field
strength at which half the normal-state resistivity
has been restored. This field as a function of tem-
perature is routinely cited as the upper critical field
H, 2(T) for inhomogeneous samples. This H, 2 is
"enhanced" above the expected BCS value (shown
as a dashed-dotted line) as the temperature is
lowered. This slight enhancement is a feature of
the theory presented here. 5

A more striking feature of. the resistivity data is
that the magnetic field width of the transition in-
creases with decreasing temperature. The 90/o and
0'/o resistivity points are shown as squares in Fig. 1.
Traditionally, this broadening has been ignored by
theorists. Fitting our theory to the data (dashed
lines in Fig. 1) gives both the magnitude of the con-
ductivity fluctuations and the length scale on which
they occur.

The theory leading to the results shown in Fig. 1

is based on the quasiclassical method and will be
discussed in a longer paper. The idea of the calcula-
tions can be discussed more simply. First we must
generalize the pair-breaking parameter p to an inho-
mogeneous system. For a dirty but homogeneous
system the upper critical field H, 2( T) separating the
normal and superconducting phases is given in
terms of the digamma function p(z) by

T 1 p'(H)
ln +Q —+ —Q( —, ) =&,

Tc 2 2' kg T
r

where the homogeneous pair-breaking parameter is

0(H) = H
o- kh

, 3yo e', 4o

(2)

Equation (1) produces the dash-dotted curve in
Figs. 1 and 3; the actual value of the zero-tem-
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the fluctuations of only the conductivity by a mag-
nitude 5o- and an inhomogeneity length scale l;„h
according to the distribution

(Ba.(R) ga-(R')), „

FKJ. 2. Broadening of the pair-breaking parameter
spectrum due to inhomogeneities. The increasing split-
ting of the band edges of A (p,H), p and p, as a
function of the external magnetic field reflects the in-

creasing spatial resolution of inhomogeneities.

0
0

(5~)' 1 (R —R')'
exp

(li„hd2n ) 2 l;„h
(3)

FIG. 1. Comparison of data (Ref. lb) with theory for
magnetic-field dependence of the resistivity transition as
a function of temperature. The experimental data
(theoretical results) are denoted by squares (short-
dashed line, 8,2'", and long-dash-short-dashed line,
H, 2'" ) for the 90% and 0% points on the resistivity curve
and by circles (solid line, H, 2) for the midpoints. In ad-

dition, the BSC upper critical field H, 7(T), based on its
slope at the critical temperature, is shown as a dash-
dotted line. (a) For the Zr75Ni25 sample, H, 2(0) =41 kG
[i.e., $(0) = 90 A], So/o0= 0.3, and l;„h/$(0) =0.5 pro-
duce the theoretical curves shown. (b) For
Zr7475Gd025Rh25, the equivalent numbers are H, 2(0)
= 53 kG, So./o. o

= 0.2, and l;„h/((0) = 2.0. A small con-
stant pair-breaking parameter (hp = 0.55 K) has been in-

cluded to account for the T, depression due to paramag-
netic scattering from the Gd impurities. The deduced in-

homogeneity parameters are insensitive to variation of
the small additional pair-breaking parameter.

perature upper critical field H, 2(0) = 0.693T,
&& ( —dH, 2/dT) T depends on the averaged conduc-

tivity o-p and the averaged electronic specific-heat
coefficient pp.

In an inhomogeneous system the conductivity (and
specific heat) fluctuates. For simplicity we model

These fluctuations give rise to fluctuations in the
pair-breaking parameter p which can be character-
ized by a spectral weight function A (p,H) with the
following properties, illustrated in Fig. 2: (i) A (p,
H) is nonzero only for p;„(H) ( p & p,„(H).
These p;„(H) and p,„(H) then, via (I), give the
lower and upper dashed lines in Fig. 1 and in Fig. 3
for the parameters of Fig. 2. (ii) The solid line in
Figs. 1 and 3, given by

H„(T) = fdHHd (p H)lfdHA (p H), (4)

is the upper critical field associated with the mid-
point of the resistive transition. The enhancement
of 0,2 with respect to the homogeneous result
(dash-dotted curves in Figs. I and 3) can be under-
stood from the facts that H, 2 is proportional to 1/o.
and that (1/o. ) ) I/(a-).

To discuss the calculation of the spectral dI (p,
H), we start with the linear equation for the ex-
istence of a superconductivity gap function:

t)(R)= fd'R'(f dtR(R, R' t)) (R'),4(5).
with

E(R, R', t) =27Th X„exp( —2~e„~t)g(R, R', t).

Here e„= (2n + I )7r ka T are the Matsubara fre-
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quencies and the correlation function

do);„, d 0
g (R, R', t) = — e '"' sgn(A + &0) sgn(II —cn)

7T ~ 2'll

x ([G (R, R', fi +co) —G" (R', R, f1+&0)] [6 (R, R', 0 —tn) —G'(R', R, fI —r0)]) (6)

I
max

l.5 ~ c2

2hc

].0

O oIE O
Z
z
II

0.5

Sa = 0.3a

5,„„=g' '(T=o)

is given in terms of products of normal-state
Green's functions averaged over the impurities.

In a homogeneous dirty system this function de-
cays exponentially as e ~', where p is the pair-

breaking parameter. For an inhomogeneous system
there will be a range of pair-breaking parameters
whose distribution is described by the spectral
weight function

A (R, R', pH) = L '(g (t)}

= ImK(R, R', p)/7r,

where L '(g} denotes the inverse Laplace trans-
form of g (R, R', t).

The deriveds equation of motion of K(R, R', p)
can be understood by analogy with the diffusion
equation ri = —'7 J = V [D (R)Vn ]. The ap-

propriate differential operator here is

2
1 1 ~o kah —~(R)—P"(~(R)}=———,8
2 3 pp e 0p

The self-energy X is given by

&= ((P"(& })')„/(p—P"( }—X). (10)

This simple form for the self-energy can be calcu-
lated in terms of eigenfunctions of P"(a.ii}. In par-
ticular

((P'~(5a.}) ) = p (H), (11)(I+h)' '

where h = [l;„b/((0) ] H/H, q(0) is the effective
magnetic field in units of Qri/2rrl;„„The low. -field
behavior (~ H ) can be qualitatively understood as
follows: The matrix element of P'" is proportional
to H [cf., Eq. (2)], the extra factor of H coming
from the degeneracy of the Landau level.

The averaged spectral function A (p,H) giving
the "density of states" for the pair-breaking param-
eters and hence, via (1), the distribution of H, q for
the inhomogeneous system, is now easily calculat-
ed. In the limit of large magnetic fields, it simpli-
fies to

&/2

min(p)
I

max(p)

H H

(12)

where I) = V + i (2m/$o) A. We use the gauge
choice A»=HX, A„=A, =O. [Note that a-(R)ks/
3yae =D(R)/7r .] Then the equation of motion
(p —P")K(R, R', p) =5(R —R') has a formal so-
lution for K averaged with respect to the distribu-
tion of conductivity fluctuations (3):

(K(R, R', p)),„
= ([p —P '(tr, +Sir(R)}l '),„
=[,-P( '}—X]-'.

0.0
0.0 0.2 0.4 0.6 0.8 (.0

Here H,„t~(p) are related to the p
shown in Fig. 2. In particular

p,„(,„)= pa(H) + 2((P"(5a})~),ti'. (13)
FIG. 3. Critical fields characterizing the resistive tran-

sition of an inhomogeneous superconductor in a magnet-
ic field. h, q is the (reduced) critical field determined
from the averaged kernel, and h, q'" and h, q'" are the criti-
cal fields related to the band edges p and p, respec-
tively, of A (p,H).
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,„(p) and H;„(p) correspond to the in-
tersection of the p;„(H) and p,„(H) curves,
respectively, for a given p. The resulting H,„j;„)
as a function of temperature, plotted in Fig. 3 as

h, &'"I '"~, are deduced from Eq. (1) with p (H)
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replaced by p;„(,„). In addition, the value of the midpoint H, 2 is given by —,
'

(JH,„+JH;„) .
Finally we turn to how the two parameters in the model, her and l;„h, are determined from the data. In the

limit of large H, 2(T), H, 2'" (T)/H, 2 (T) = 1+25o/oo .As H, 2(T) decreases, the asymptotic form is

Hc2 ( T) 5 3 g(0) Hc2(0)

H, 2'" (T) ~o 2 I.h H, '" (T)

Plots according to (14) were used to deduce the
I

parameters for the systems shown in Fig. 1: Zr75-
Ni2s, 5o/o. o=0.3 and I;»/$(0) =0.5; Zr747sGdo. 2s-

Rh2s, 5o./a. o
= 0.2 and I;„h/$(0) = 2.0.

This is the first theory for inhomogeneous super-
conductors, demonstrating that the inhomogeneity
scales can be deduced from measurements of H, 2 or
rather from the resistivity widths, data which in the
past have been largely ignored. The theory does
not depend on there being small changes in the
parameters but only that the changes are gradual on
the atomic scale, i.e., kFI;„h )& 1.

There is some evidence for inhomogeneity scales
of order 50-100 A, but not much on the form of
that inhomogeneity. For example, small-angle x-
ray scattering on (Moo sRuo 4) s2Bts, which exhibits
an enhanced H, 2 at low temperature, ' reveals an
inhomogeneity scale of order 50 A. . The only evi-
dence as to its nature comes from a microprobe
study" of a similar (but not superconducting) ma-
terial Fe4pNi4pB2p for which boron-rich domains
were observed. Another example is in the super-
conducting amorphous alloy Zr&pp „Si„where flux-
oid pinning, believed to be most strongly influ-
enced by inhomogeneities of order ((0), was corre-
lated with the enhancement of H, 2.

' The present
theory would yield similar results from inhomo-
geneities due to microcrystallization, phase separa-
tion, fluctuations in atomic concentration, or
anything that produced variations in the conductivi-
ty on —100 A scale.
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