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We investigate the dissipative motion of a particle coupled to a normal Fermi fluid, where
particle-hole pairs are the relevant low-energy excitations. It is shown how to derive an ef-
fective action by use of linear-response theory and integrating out of the fermions’ degrees
of freedom. Its properties are discussed in detail, with particular emphasis on the similarities
and connections with other descriptions of friction widely used in the literature.
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A question which recently has raised much in-
terest is the effect induced by dissipation on quan-
tum phenomena.!"? The standard starting point is a
phenomenological Hamiltonian in which the en-
vironment is simulated by an appropriately chosen
set of harmonic oscillators.2 This makes the quan-
tum treatment of the system particularly simple,
and general arguments show that it should be ade-
quate to describe the low-energy behavior of a wide
class of environments.? In particular, a microscopic
Hamiltonian derived for Josephson junctions® has
closely related properties.

In this work we will analyze the case in which the
environment is a gas (or liquid) of fermions, and
the relevant low-energy excitations are particle-hole
pairs. Many such systems are known to induce fric-
tion in the classical limit,%> and we will investigate
to which extent the quantum results obtained for
harmonic oscillators®~1? are also valid in this situa-
tion. While many physical realizations are possible,
we will mostly deal with the case of a heavy charged
particle interacting with the valence electrons of a
metal, either inside or at the surface,*!'12 so we
will also allow the fermions to interact between
themselves. For normal Fermi systems, the Lan-
dau theory prevents a qualitative change of the
low-energy excitations, even in the presence of in-
teractions.

That these systems do induce friction and
velocity-dependent forces on an external particle
can be proven by rigorously deriving the Fokker-
Planck equation.*® A more straightforward way is,
however, to calculate the energy dissipated per unit
time by a charge moving with constant velocity.
Using linear response theory,!> we have (for the
electron gas)

=0 [v-qV,Imle"1(q-V,9)1d%q, (1)

where V is the velocity, ¥V, the Coulomb potential,
Q the charge of the partlcle and €~ ! the dielectric

constant of the electron gas. At low velocities we
can write

dE/ dt =nv?, (2)
where

n=40" [ ¥, limlew.0) oo’
3)

in agreement with the result expected for a dissipa-
tive medium with friction coefficient n.1*

In order to make connection with the treatment
of quantum effects for the case of harmonic oscilla-
tors, we will use the path-integral formalism and
derive an effective action which only involves the
coordinates of the external particle. The Lagrangi-
an of the system is (in imaginary times)

L=MR*+ Lo+ Q [ V(R—Pp(ndr, (4)

where L, describes the fermion environment, Vis
the interaction potential between the external parti-
cle and the bath, and p(r) stands for the fluctua-
tions in the charge density of the fermions. We as-
sume the system to be neutral, so that the mean
value of p(r) is zero.

We now need to integrate out the fermion de-
grees of freedom for each possible path of the
external particle, R (#). That is, we have to com-
pute

Z(R(0))=Tr{expl—S;n(R(D,r)]), )
where r; stands for the set of fermion coordinates,
and we are dealing only with the coupling term in
the Lagrangian (4). Unlike the case of harmonic
oscillators, the integral implied in (5) is not Gaus-
sian, and cannot be performed exactly, even for
noninteracting fermions. We can, however, expand
(5) in terms of the coupling between the particle
and the environment, Q(#), which, for conveni-
ence, we will assume to be time dependent. With
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Fourier transformation of (4), we can write

1 622 .= D D/ 2 ’ 3

- —F=——=— | explig- [R(O=R(NH ]}V, (Dp_,(t))dq, (6)
Z 90090 (1) Jewtia a{pa(Dp-g(1))

where the average is to be taken over the fermions’ degrees of freedom, and the correlation function is a

time-ordered product. With neglect of higher-order derivatives, Z is given by

z=exp|~ 02 [ ar [ ar f.a*q explid- [R()—R() N VE(py(Dpy (1)) )

which is the desired effective action within the linear-response approximation.

It is illustrative to consider (7) in terms of Feynman diagrams. The expansion of log(Z) in powers of the
coupling constant is equivalent to a cumulant expansion in which all self-energy insertions with two external
legs are included, as shown in Fig. 1(a); this result is exact if (5) were a Gaussian integral, as with harmonic
oscillators. On the other hand, we are neglecting ‘‘two—electron-hole’’ diagrams like the ones in Fig. 1(b),
which amounts, as mentioned above, to work within linear response. Finally, the density-density correlation
function in (7) can include effects due to interactions among the fermions, as schematically depicted in the
renormalized bubbles in Fig. 1(a).

Macroscopic friction is related to the low-energy behavior of the environment,2 which, in turn, deter-
mines the long-time features of the effective action (7). Taking the Fourier transform of (p,()p_,(1')),
and expanding it for low energies, we have

(pqp_q)w2|w|f(q)+... . (8)
Then, the effective action in (7) can be written as
Ser(R(0)=Q [ dt [ ar [ &g V2r(@) explig-[R()-R(NY (1=1)?
=0 far [ arg(R(-R() (=117, &)

where the function g is the Fourier transform of qu f(g). This action is very close to the one analyzed in
Refs. 1 and 2, and includes, as a particular case, the action derived in Ref. 3. Moreover, for small values of
R () — R (¢'), the first term in (9) which depends on the position of the particle is of the form

SR = [at [ arnlR()~RG) -T2, (10)

where n can be identified as the friction coefficient
of the system. In the particular case of the electron
gas, where V, is the Coulomb interaction, it coin- ——
cides with the definition given in (3), as expected.

So far, the arguments have been very general,
and only require the validity of the linear-response
approximation, and the expansion (8). Linear
response should be widely applicable, as discussed
in detail in Ref. 2. Formula (8) is related to the 7
amount of phase space available for the creation of
particle-hole pairs, i.e., is a kinematical constraint,
independent of the details of the interaction be-
tween the external particle and the environment.!’
This means that dissipation is a general feature of
fermion environments. On the other hand, stand-
ard coupling to phonons cannot have the same
long-time behavior, because momentum conserva-
tion prevents phonon emission at velocities smaller
than the velocity of sound.

(a)

———— (b)

We will now analyze the possible effects due to
the deviations of g (R (¢) — R (¢')) from the quad-
ratic form given in (10). For the electron gas, and
with use of the RPA dielectric function, it can be
shown that the expansion leading to (10) is only

FIG. 1. (a) Some diagrams included in the effective
action discussed in the text [Eq. (7)]. Shading stands for
renormalized bubbles, including effects of interactions
between fermions. (b) Diagrams not included in the ef-
fective action.
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valid for distances small compared with kg !, i.e.,
microscopic distances. In general, g cannot be fac-
torized into a function of R(¢) and a function of
R (?'), and the action (9) cannot be simulated by a
finite number of phonon branches coupled linearly
to the external particle; in terms of possible rep-
resentations of such an action by a set of harmonic
oscillators, it means that a nondegenerate set of
modes {n} with a unique relationship between the
energy w, and the quantum index » does not suf-
fice, because it leads to a factorizable action. The
same can be argued for any finite number of
branches; in this case, the function g(R,R’) is a
sum of factorizable terms. The only possible reali-
zation of this action in terms of oscillators requires
an infinite number of degenerate modes for each
energy, completely filling the lower part of the w-¢
phase space.

The results on the localization transition, in Refs.
6-8, and the loss of quantum coherence, in Ref. 9,
have been derived assuming that the external parti-

Sm(R())= [ dt [ dr A(R(D=R().1~1),

cle stays most of the time in a deep potential well,
with occasional excursions to neighboring wells.
Then, the only relevant quantity is g(R;— R;+1),
where R; stands for the average position of the par-
ticle in well i, and R; 4 is the corresponding value
for well i+1. This number should replace the
quantity 'r)(R,-+1—R,~)2 derived from expression
(10). Otherwise, the analysis to be carried out is
identical. For practical applications, this implies
that the critical value of the friction coefficient
which would induce a localization transition is
higher than what is expected from a quadratic ac-
tion, because physically more realistic actions, like
(9), are bounded at long distances. In the case of a
two-level system, a different analysis, valid also in
the strong-coupling cases, can be used to give
bounds on the effective friction coefficient as a
function of the coupling potential.!617

Finally, it is interesting to note that the argument
given so far can be reversed, and we can analyze the
possible forms of an effective action which induces
friction effects. Given a term in the action

(11)

we can obtain the energy dissipated by a particle moving with constant velocity v. The action along such a

trajectory is

Sm(v.to)= [ at [ ar [ dg [ dwexplio(— )] explq - (1—1)14(g,0).

We know, from the Hamilton-Jacobi equation, that
9s/8t+ H=0, and H =nv?ty; therefore

(13)
Taking in Eq. (12) the limit of small velocities and

large times, it means that we can identify!®
)2 2A(R—R't—1t")
9(R—R')?

Sint (v, 1) =nv2d.

(t—

lim
t—t'—

R-R'—0

n= ,(14)

so that classical friction is related to the long-time
and short-distance behavior of the effective action,
which is the limit exactly described by the harmonic
oscillator model discussed in depth in Ref. 2.
Although the argument presented here is far from
rigorous, it suggests that most of the physics associ-
ated with dissipative environments is included in
the action written in Eq. (10), irrespective of their
internal structure.

In conclusion, we have used linear-response
theory to derive an effective action which describes
the motion of an external particle coupled to a nor-
mal Fermi fluid. It has been shown that these en-
vironments can provide a microscopic basis for the
phenomenological ‘‘harmonic oscillator’”> model
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widely used in the literature. Hence, the results ob-
tained so far may be relevant for a wide variety of
topics. As possible examples, it is interesting to
mention quantum diffusion of particles!® or intersti-
tials?® inside metals, or at the surface,?! 1/f noise
and defects in disordered metals,?? power laws and
infrared singularities in the dielectric relaxation,
and nuclear spin relaxation rates of a large number
of systems in condensed matter.23 24
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