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A graph theory of single-spin —flip kinetic Ising models is developed and applied to a class
of spin models with strongly cooperative dynamics. Self-consistent approximations for the
spin time correlation function are presented. One of the dynamical models exhibits a glass
transition with no underlying thermodynamic singularity. The approximation for the time
correlation function predicts a critical temperature, below which small fluctuations from
equilibrium in the thermodynamic limit cannot relax in a finite amount of time.
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The kinetics of structural relaxation in viscous
liquids and glasses is a field of much current in-
terest. There are several excellent reviews of relax-
ation processes in vitreous materials. ' The most
commonly used microscopic theories of the dynam-
ics of dense liquids and the glass transition are the
free-volume theories" and the Gibbs theories. '
These theories have contributed to our present
understanding of relaxation processes in such ma-
terials, but they rely on severe mathematical ap-
proximations. Montroll and Reiss, Angell and
Rao, and Brawer' have used simple spin models to
investigate the kinetics and development of order in
dense fluids. In a recent study, Leutheussers has
developed a microscopic model of the glass transi-
tion in the hard-sphere fluid. By an approximate
analysis of mode-coupling equations, he derived a
simple nonlinear equation for the time evolution of
the density correlation function that predicts a glass
transition.

In this Letter, we introduce a microscopic theory
of the glass transition that is based on a kinetic Ising
model with very cooperative spin-flip rates. By
graphical analysis, we obtain results for the spin sys-
tem that are very similar to those of Leutheusser
for hard spheres. This observation may be a mani-
festation of some aspect of universality for the glass
transition.

The equilibrium properties of our dynamical
model are those of the spin- —,

' Ising model for N
spins on a lattice. (The spin models considered in
this paper are standard Ising ferromagnetic models
and are not those used to model spin glasses. ) The
Hamiltonian includes ferromagnetic exchange in-
teractions between all nearest-neighbor pairs of
spins and magnetic interaction of each spin with an
external field. The state of the jth spin, o, can
take the values +1 (spin up) or —1 (spin down),
and the Hamiltonian is constructed such that a posi-
tive field tends to enhance the spin-down configura-
tion.

Following the Glauber construction of a kinetic
Ising model, we describe the dynamics of the spin
system by a master equation with transition proba-
bilities that satisfy the principle of detailed balance
and that allow only a single spin to change state in a
differential time increment dt (i.e., a single-
spin-flip model). As candidates for models of
cooperative relaxation, a class of facilitated kinetic
Ising models is considered. An n-spin facilitated
model is defined as one for which the flip rate of
the jth spin is nonzero only if n or more near
neighbors of spin j are in the spin-up state in spin
configuration o-.

In this Letter we consider a particular model with
n = 1 and a second model with n = 2. The one-spin
facilitated model is defined by the rate at which the
jth spin flips down:

where m is the number of near neighbors of spin j
that are in the spin-up state in configuration o- and
o. is a constant that determines the time scale of re-
laxation at high temperature. The corresponding
rate at which the jth spin flips up against the field
in spin configuration o- is determined by the condi-
tion that 8', „~must satisfy detailed balance with
respect to the equilibrium distribution function
p [o-].9 The two-spin facilitated model is defined by
the down-flip rate

Again the corresponding up-flip rate is determined
from detailed balance.

In the present Letter we shall be concerned with
the relaxation of small fluctuations from equilibri-
um. The quantity of interest is the one-spin time
correlation function

C'(t) = (o.;(t)o-, (0) ) —(o-, ) ',

where (. . .) is an equilibrium ensemble average
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over all the 2 spin configurations and t is the time.
We have developed a perturbation expansion for
the Laplace transform of the time correlation func-
tion, '0 C (e) (e is the Laplace variable). The
terms in this expansion were assigned a diagram-
matic representation and various topological reduc-
tions were performed. The time correlation func-
tion can be expressed in terms of a single-spin
propagator, P(e),

C (E ) = 4c(1—c)P(e) + X[&(e)], (4)

that has been shown to satisfy the following Dyson
equation'

y(~) = (~ —Xlg(~)]] (5)

In Eq. (4), c=pi[+I] is the exact one-spin equili-
brium probability that a spin is up and X[/(~)] is
a correction to the first term that accounts for
correlations between different spins at equilibrium.
Because we are interested in spin dynamics in the
presence of a field and away from the critical point,
such equilibrium correlations will be short ranged.
Exact diagrammatic expansions have been de-
rived'a " for X[/] and for the self-energy appear-
ing in Eq. (5), X[&].

The self-energy, X[/], depends on the fraction
of up spins, c, and on the quantity 0.$(e) for the
one- and two-spin facilitated models. An approxi-
mation to X[gl for the one-spin (two-spin) facili-
tated model that should be accurate at both high
and low temperatures (hence, large and small c)
can be obtained by summing the infinite set of
self-energy diagrams that are first (second) order in

c, but that include all orders in Q(e). For small
values of c this approximation should be accurate,
because all diagrams not included in the approxima-
tion that are nth order in $(e) contain at least one
more power of c than the nth-order diagrams in-
cluded in the approximation. For large values of c,
in/(e) i ( 1, so that the single diagram in the self-
energy series that is zeroth order in Q(e) provides
the dominant contribution to X[/]. This diagram,
however, is included in the approximation de-
scribed above. Thus, the approximation should be
accurate for both large and small values of e, and is
expected to be realistic for intermediate values as
well. The structure of the diagrams neglected sug-
gests that this approximation for an n-spin facilitat-
ed model will be best when n/z is small. A similar
analysis of the X[/] diagrams indicates that X[/]
is negligible in comparsion with the first term in Eq.
(4) at both high and low temperatures.

In time units of n ', the above approximation

——,
' z(z —1)cz

Xz[$(~) l =
(1—c) [1+(1—c)$3(e) ]

(7)

When Eqs. (6) and (7) are substituted into Eq. (5)
for X, closed equations for $(e) are obtained that
provide approximations to the time correlation
function for the one- and two-spin facilitated
models. These equations can be expressed as non-
linear integral equations for $(t). They can be
solved numerically and analyzed by using the
asymptotic techniques developed by Leutheusser.

It is convenient to define an average structural
relaxation time for the models, ~, as the area under
$(t), r =$(0). For the one-spin model, the above
equation predicts that r =—(1—c)/zc for large e, and
for small values of c the asymptotic behavior of v is
given by r =2/zc. These results for the relaxation
time yield Arrhenius temperature dependence for ~
at both high and low temperatures, with the respec-
tive activation enthalpies given by 2Hand 2H+ 2zJ.
H is defined as the field strength and J is the
exchange-coupling parameter between near-
neighbor spins.

The low-temperature behavior of the one-spin
model is consistent with a defect diffusion picture.
Under such conditions the dominant configuration
of the spin system will be a large connected region
of down spins in which a small number of isolated
spin-up "defects" are imbedded. In the one-spin
model each such defect can facilitate one of its
neighboring down spins to flip up, after which the
original defect spin can flip down. Hence, at low
temperatures defects have a nonzero diffusion con-
stant and can migrate. The activation enthalpy for
the resulting structural relaxation is governed by
the activation barrier for a single step in the dif-
fusion process, 2H+ 2(z —2)J. To leading order in
1/z this agrees with the prediction of Eqs. (5) and
(6).

For the two-spin facilitated model, the approxi-
mate equation for P(e) is very similar to that for
the density correlation function in Leutheusser's
model of the glass transition [Eq. (3) of Ref. 8].
The self-consistent equation for the two-spin facili-

for the one-spin facilitated model can be written

—zc [I+2$q(e) + [$z(e) ]']
X, [y(.)]=

(1 —c)[1+/ (e)][I+2Q (e)]
'

(6)

where Q„(e) is the Laplace transform of [P(t)]"
and z is the coordination number of the lattice. The
corresponding approximation for the two-spin facili-
tated model is given by
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FIG. 1. An Arrhenius-type plot of the average relaxa-
tion time, ~, vs the fraction of up spins, c, for the two-
spin facilitated model and a simple-cubic lattice.
diverges like (e —e') '76' at c"= 0.0904.
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tated model has the following properties. Forc) c', where

(
2 )3/2/ [ 1/2 ( 1 ) t/2 + ( 2 )3/2]

the approximation for $(t) decays to zero at long
times. At c", the approximation predicts that P(i)
decays to the nonzero value of —,'. For c ( c' we

find that $(r) decays to a nonzero value f(c),
where f(c) is the largest positive real root of the
equation

f (f 1) + —,
' z—(z —1)cz/(1 —c)z=0.

Thus, the approximation for the two-spin facilitated
model predicts that the spin system will fall out of
equilibrium, for c ~ c'

~

At large values of c ( ——,
' ) the decay of $(t) is

exponential with a relaxation time r =—2(1 —c)/
z(z —1)cz. As c' is approached from above, the
spectrum of relaxation times for the two-spin model
becomes very broad ~consistent with a Williams-
Watts function —exp [ —( t/r )p], p ( 1]. Such
nonexponential decays are observed in real materi-
als in the vicinity of the glass transition and are be-
lieved to arise from cooperativity of relaxation. '

The approximation for the average structural re-
laxation time for the two-spin facilitated model on a
simple-cubic lattice (z = 6) and c )c' is shown in

Fig. 1. In the limit of both high and low tempera-

ture —inc is proportional to 1/T, so that the figure
is similar to an Arrhenius plot for the temperature
dependence of ~. The qualitative features of Fig. 1

are in agreement with experiment. ' At high tem-
perature (or large c) the approximation exhibits Ar-
rhenius behavior with a temperature-independent
activation enthalpy, but the activation enthalpy be-
comes strongly temperature dependent as c is de-
creased towards c'. The average relaxation time in
the present approximation diverges at c' according
to r —(e —c'). '76s This divergence is weaker
than in the Vogel-Fulcher expression [r —exp[&/
(c —c') ]j, which is often used to fit relaxation and
viscosity data, but it is known that the Vogel-
Fulcher equation does not accurately describe ex-
periments very near the "ideal" glass transition at

In Ref. 11 we present an argument that in the
thermodynamic limit (N ~) for the two-spin fa-
cilitated model, the master equation dynamics con-
stitute an irreducible Markov chain on the full man-
ifold of 2~ spin states (with the exception of a set of
states with negligible weight). Hence, the equilibri-
um properties of the two-spin model must corre-
spond to the equilibrium properties of the full man-
ifold of states, i.e. , the properties of the equilibrium
Ising model. Because the Ising model has no ther-
modynamic singularities for nonzero field, the glass
transition predicted by the above approximation for the
two-spin model has no underlying thermodynamic
singularity. Hence, the transition is a purely kinetic
effect resulting from dramatically increased coop-
erativity of relaxation at low temperatures.

To discuss the nature of this cooperativity, let us
consider the case of a simple-cubic lattice in three
dimensions. In the two-spin facilitated model at
low temperatures, unlike the one-spin facilitated
model, there are no defects involving a finite
number of up spins that are mobile in the sense
that they can cause a propagation of spin-up defects
over large distances in a "sea" of down spins. Any
collection of defects that is surrounded by a cubic
surface of down spins cannot, by itself, cause the
down spins in that surface (or outside) to flip up,
since each spin in the surface has at most one
neighbor in the interior of the surface. The defects
are trapped, and the surface spins can relax only by
defects propagating in from the outside. However,
at low temperatures most defects on the outside are
themselves trapped by similar surfaces. In the
present approximation, the relaxation time and the
activation enthalpy diverge at some critical concen-
tration c' in the thermodynamic limit. We believe
that this divergence is real, but the present approxi-
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mation is probably not accurate enough to charac-
terize properly the nature of the singularity.

Other facilitated spin models may exhibit qualita-
tively different dynamical behavior. In particular,
the three-spin facilitated model constructed in the
same manner as the models discussed here may ex-
hibit a glass transition that has an underlying ther-
modynamic singularity. Such a singularity would
correspond to a transition in which, as c is de-
creased by lowering the temperature, at some point
only a subset of the entire manifold of Ising spin
states is accessible to the system.

A detailed treatment of the theory and results
described in this Letter will be published else-
where. '0 "
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