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Scaling Behavior of Self-Avoiding Random Surfaces
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Self-avoiding random surfaces are analyzed by renormalization-group methods. The
Hausdorff dimension 1/v and the critical plaquette fugacity are computed for different
dimensionalities d; in particular, v= —, —e/4 +0( e) for d=2+e. The model describes

"sheet polymers" in a good solvent: A Flory type of argument yields v = 3/(4+ d), in good
agreement with the renormalization results, and a critical dimensionality d, = 8, with v = 4.

PACS numbers: 05.50.+q, 05.70.Jk

Models of self-avoiding random surfaces (SAS's)
are natural generalizations of the self-avoiding walk
(SAW) problem. ' In the context of lattice gauge
theories SAS's are expected to play a role analogous
to the one of SAW's for spin systems, and a study
of their scaling properties should lead to a better
understanding of these theories and their continu-
um limits.

Besides representing an interesting problem in
lattice statistics on their own, SAS's can be viewed
as realistic generalizations of the surface con-
sidered, e.g., in the solid-on-solid model, which
describes solid surfaces and interfaces. There is
nowadays clear experimental evidence that the sur-
faces of many materials present irregularities with
remarkable self-similarity over several length scales
in the molecular range. 4 The Hausdorff fractal
dimensions of these surfaces are actually measured
by monolayer coverage techniques. 4 We thus hope
that the theoretical study of models like SAS's and
of their fractal properties will be of interest for sur-
face physics.

As emphasized by the present approach, SAS's
can also be expected to describe configurational
properties of single flexible two-dimensional "sheet
polymers"~ with excluded-volume effects.

By SAS's we mean here a collection of elementa-
ry plaquettes on a d-dimensional hypercubic lattice.
The plaquettes should be glued together in such a
way as to form a connected aggregate, without over-
lap, in which each lattice link belongs to, at most,
two plaquettes. Furthermore, the surfaces are
orientable, without handles, and either have a con-
tour (given by the bonds belonging to a single pla-
quette), or have the topology of a sphere. The set
of all SAS's with a given fixed contour represents,
in a gauge theory, typical strong coupling contribu-
tions to the Wegner-Wilson loop correlation func-
tion, which defines the string tension. In the con-
text of our model the role of the Wegner-Wilson
loop is played by a properly defined generating

function of the general type defined below.
Like for SAW's, we are primarily interested in

discussing the asymptotic behavior of a characteris-
tic length, (, of the surfaces, when the total
number of plaquettes, N, approaches infinity. We
can expect that (, e.g. , the average radius of gyra-
tion with respect to the "center of mass, " behaves
like gcc X", for large X, v being a proper exponent,
whose reciprocal simply gives the Hausdorff dimen-
sion of the critical SAS's. Instead of working with
all surfaces having a fixed number, N, of pla-
quettes, the problem is most conveniently formu-
lated in a grand-canonical context, where a fugacity
E is associated to each plaquette; the grand-
partition function (generating function) is just a
sum over distinct surfaces S, of a Itiven topology
and containing a given point, of K', ~$ ~ being the
area of S. The grand-canonical average radius of
gyration is then a function of E, defined for E
lower than some critical value, E„and diverging
like (E,—K) "for E K,

Our strategy for renormalizing SAS's consists of
finding a regular mapping K' =K' (K), such that

g(K') =1 'g(K), - (I)
I being a length rescaling. As a result of the as-
sumed regularity of K' (K), the singular behavior of
t|: at E, implies E'(E, ) = K, and dK'/dK ~x = l'i".

Our recipe for constructing an approximate map-

ping for SAS's has strong analogies with similar
work on the SAW problem, and can be best illus-

trated in a three-dimensional example. In order to
obtain a rescaling l = 2, we partition the lattice into
cubic cells of side 2; the plaquettes on the boundary
common to two adjacent cells are assumed to be-
long to the one with higher values of the coordinate
normal to the boundary.

In a given cell, all simply connected surfaces real-

izing an effective full covering parallel to a given
face are then assumed to contribute, at a coarse
grained level, to the fugacity K' of the correspond-
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lustrated in Fig. 1(c) for d = 3. Fugacities, Kj, of
plaquettes perpendicular to the rescaling direction
are then given by

Ki = R (K) = K (K ' 1)—/(K2 —1), (3a)

I

/~~~~~ a~~ a

whereas fugacities K]] of plaquettes parallel to that
direction are simply

(3b)

a) b) c)

FIG. 1. Surface with nine plaquettes contributing to
K' in Eq. (2). (a) The heavy lines, continuous and
dashed, show the fixed part of the border. (b) The corre-
sponding renormalized plaquette is in the (2,3) plane. In
(c) the anisotropic cell is shown and a particular (three-
plaquette) surface contributing to K' in the (1,2) plane is
reported.

ing effective plaquettes of a rescaled elementary cell
[Figs. 1(a) and 1(b)]. Like in the "corner rule" for
SAW, in order to avoid overcounting, one must
consider surfaces with part of the border fixed [e.g. ,
coinciding with two consective sides of the cell face
to which the renormalization refers, see Fig. 1(a)].
In this waq jast fourteen surfaces contribute to the
mapping, giving

K' = K4+ K'+ 4K'+ 3K'+ 4K'+ K", (2)

which has a nontrivial fixed point K, =0.651 with

v = 0.37. At present these results can only be com-
pared with the Monte Carlo estimate K, = 0.588 for
spherical SAS in d = 3.

Unlike the case of SAW's, extension of the
above scheme of calculation to higher values of d
and/or l for SAS's would pose formidable enumera-
tion problems. However, we could obtain transfor-
mations with explicit parametric dependences on l

and d, by performing successive anisotropic rescal-
ings in each single lattice direction. '

In order to rescale the system by a factor I along
one of the coordinate directions, we use a cell as il-

Successive application of d different anisotropic re-
cursions like (3a) and (3b) yields the result of a
global rescaling l. At this stage we make the ap-
proximation of forgetting the anisotropy generated
in this way and choose as renormalized K' the
result of applying (3a) and (3b) d —2 and 2 times,
respectively, on K. The order in which the
transformations are successively applied does not
sensibly affect the final results. A similar aniso-
tropic scheme applied to SAW's gives results which,
in all d, compare very well in quality with those of
more involved isotropic renormalization schemes. "
As a rule, for SAW's it turns out that the best
results are obtained when the transformations like
(3a) are performed first; so we made the same
choice, which gives K'= [R (K)]' for SAS's.
In Table I several values of K, and v obtained by
this method for different dimensionalities are re-
ported. At this stage, unfortunately, we cannot
compare the results of Table I with other estimates.
However, it is important to notice that the similar
scheme applied to the SAW's " gives rather satis-
factory results: e.g. , for l=3 and d=2, we get
K, =0.408 and v=0.74 (expected E, =0.380 and
v =0.75 ), and for I =3 and d = 3, K, =0.243 and
v = 0.63 (expected K, = 0.213 and v = 0.59 s).
Furthermore, in the SAW case, for l =1+5 and
d = 1+ a (5 and e small and positive), we obtained
by the same scheme K, = 1 —e+ 0 (e2) and
v=1 —e/2+O(a ). These last results were ob-
tained previously in a different way, and conjec-
tured to be exact.

For SAS's, by choosing l infinitesimally close to

TABLE. I. In the first and second row values of Kc and v obtained by our renormalization scheme are reported. In
the third row are the values of v from Eq. (7).

Kc Kc Kc

0.636
0.619
0.588'

0.38
0.39
0.43

0.491
0.477

0.32
0.34
0.37

0.412
0.400

0.29
0.31
0.33

0.360
0.350

0.27
0.29
0.30

0.323
0.315

0.26
0.28
0.27

0.295
0.288

0.24
0.27
0.25

'Ref. 9.
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1, we get

rC =a+, [1-(d-1)IC']S+O(5'),
1 —K2

(4)

which gives E, = 1/(d —1) ' and v = (d —2)/
2(d —1)ln(d —1). These results are exact for
d = 2, where we obviously must have K, = 1 and
v= —,. Like in the case of SAW's, we can expect
Eq. (4) to be a good approximation for d low and
close to 2. For d =2+a, in particular, we get
E,=1——,'e+O(e ) and v= —,

' —e/4+O(e ) for
SAS's.

Unlike the lower critical dimensionality (2 in our
case), the upper critical dimensionality, d„ is not
easy to determine with real-space renormalization
methods. By applying to our surfaces methods
similar to those used by Parisi and co-workers' for
gauge theories, one can obtain K, —0.45
x(d —2) '4 and v —, for d ~." The last
results are derived by taking into account the sur-
faces giving the dominant contribution to the gen-
erating function for d ~; these results can also
be interpreted as a "classical" approximation for
the problem. Let us remark that this "classical" K,
is very close to our renormalization-group estimates
for the highest values of d considered.

When the self-avoiding constraint is released our
SAS's become equivalent to planar random sur-
faces, for which v =

4 turns out to be compatible
with Monte Carlo results in d = 2 and 3 '4 and (for
d ~) with the results of Durhuus, Frohlich, and
Jonsson. '5 '6

Thus we conclude that v =
4 qualifies as the most

plausible "classical" value for SAS's. Such a classi-
cal value of course should imply d, = 8, just as for
SAW's v= —, implies d, =4.

The connection between SAS's and "sheet poly-
mers" suggests that we set up a Flory approxima-
tion for the v exponent. ' We imagine that our
surfaces represent configurations of two-dimen-
sional polymers diluted in a good solvent. The aver-
age radius of gyration of such polymers is thus ex-
pected to be determined by two competing effects.
The first is a repulsive one, tending to "swell" the
polymer, and is determined by short-range two-
particle encounters. In a dilute solution the corre-
sponding repulsive mean-field free energy is thus
estimated as

F„p—N /(d.

The latter effect is an elastic one, tending to reduce
g to its value in the absence of excluded-volume ef-

v=3/(4+d), 2(d ~8,
v= 4, d08. (7)

This Flory-type formula is consistent with d, = 8 if
the classical value of v is 4', moreover, it has the
nice feature of correctly predicting the value v = —,

for d =2.
For SAW's and other similar problems, the Flory

approach, besides predicting the correct upper and
lower critical dimensionalities, gives a very reason-
able approximation for v. Comparison of the
values of v given by (7) (last row in Table I) with
those obtained independently by our renormaliza-
tion approach is thus a good test. As shown in
Table I, the degree of consistency is of the same
standard as in the case of SAW's or other lattice
problems, to which Flory approximations and real-
space methods have been applied. It is worthwhile
noticing that the v values obtained by our renormal-
ization method turn out to be quite close to the ex-
pected exact value for d = 8; similar agreements are
also obtained by our scheme for the SAW case
(e.g. , v=0.54 in d =4).

Unlike SAW's, which can be considered as the
n 0 limit of an n-vector model, ' SAS's are not a
special limit of some gauge model (see Ref. 6 and
references therein). As a consequence field
theoretical techniques cannot be applied to our
model, and approaches like those presented here
are the only way, besides direct simulation, of get-
ting information on the critical properties.

For going beyond the level of accuracy obtained
here with our techniques, a better control of the
hard enumeration problems posed by surfaces in
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fects. For linear polymers (SAW) the elastic free
energy is just approximated by the one appropriate
to a Gaussian chain, F,&- g /N. For random sur-
faces it is natural to expect the area (e.g. , of the
projection of the surface on a lattice plane) to be
Gaussian distributed, instead of the radius of gyra-
tion. This is also consistent with the expected v =

4

for random surfaces since such an area has to be
proportional to (, and (~N'i . These considera-
tions suggest a term

I', i
—( /N,

for our SAS's. It should be noticed that the guess
(6), even if very plausible, cannot be justified by a
direct enumeration of purely random surface con-
figurations. Unlike for random walks, such
enumeration is beyond our present theoretical capa-
bilities. By applications of standard arguments'
Eqs. (5) and (6) lead to



VOLUME 53, NUMBER 2 PHYSICAL REVIEW LETTERS 9 JULY 1984

d ~ 3 mill bc needed in the future.
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Using a suitable renormalization approach to a model
of planar random surfaces in d = 2 we could also obtain
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