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Ground State of the Extended One-Dimensional Hubbard Model:
A Green's Function Monte Carlo Algorithm
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A Monte Carlo method for obtaining exact ground-state properties of a class of Hubbard
Hamiltonians is described. Results are presented for two special cases, nearest-neighbor
Coulomb and on-site interactions, where previous exact results are known. The straightfor-
ward applicability of the method to a wider variety of interactions is demonstrated.
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The extended Hubbard model' has enjoyed a rich
variety of applications in the study of quasi-one-
dimensional conductors2 and, more recently, in the
study of solitons in polyacetylene. Although not
limited to a one-dimensional system, it is not trivi-
ally solvable even there. Many analytic results ex-
ist, 4 but perturbation theory or variational calcula-
tions' have been necessary in the general case.

A widely used form of the Hubbard Hamiltonian
in one dimension is
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This form contains the "hopping" term where the
fermion operators ci and cI create and destroy
particles of spin o., a "Coulomb" term (here only a
nearest-neighbor interaction) of strength V, and a
contact potential when particles of opposite spin oc-
cupy the same site. In our notation, L is the
number of sites on a circle, N is the number of
particles of spin o., and pI = c~~ cI is the number
operator for particles of spin o- on site l. t, U, and
Vare coupling constants. We will set t = I.

There have recently been a number of investiga-
tions6 of the properties of one-dimensional Hub-
bard models at finite temperatures using Monte
Carlo techniques. Hirsch and co-workers have
developed a simulation method which exploits
Su zuki's7 ideas of mapping a one-dimensional
finite-temperature problem onto a two-dimensional
(space, inverse temperature) coordinate system.
Their method, like the earlier finite-temperature
Monte Carlo work by Barker requires that the in-
verse temperature coordinate be discretized. They

find, as did Barker, that the number of discrete in-
verse temperature segments (and computer time)
necessary to maintain the accuracy of the discretiza-
tion approximation grows as the temperature ap-
proaches zero. This behavior is apparently not
unique to these methods since Whitlock and Kalos
encountered low-temperature slowing down in their
work on quantum hard spheres, even though no
discretization approximations were evoked.

The Monte Carlo solution which we wish to
describe is designed to yield the zero-temperature
(ground-state) solution to the Hubbard Hamiltoni-
an. The solution method is essentially the lattice
equivalent of a Green's function Monte Carlo
(GFMC) algorithm. These techniques were
developed by Kalos and co-workers' for application
to the ground state of boson quantum fluids, partic-
ularly He. With one exception, " these have not
been successfully applied to obtain exact results for
the many-fermion ground state; however, accurate
approximate methods exist. ' The very first use of
quantum Monte Carlo techniques on a lattice can
be traced to Metropolis' who demonstrated the
feasibility for single-particle problems. More re-
cently, the GFMC has been applied to lattice field
theory problems by Heys and Stump. '

The GFMC method derives its name from the
use of a stochastic procedure to iterate the integral
equivalent of the time-independent Schrodinger
equation,

g (R) = EJG (RR') g (R') dR',

to obtain the ground state of the Hamiltonian. The
Green's function is defined as the inverse of the
Hamiltonian:
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The conditions necessary to perform the integra-
tion in Eq. (2) by Monte Carlo methods require
that the energy E, the wave function 1)i, and the
Green's function G all be positive definite. Then
EG(R,R') can be interpreted as the density of con-
figurations arriving at R from a starting position R'.
A random-walk procedure which moves a set (or
population) of configurations from their initial posi-
tions (R') to the final positions IR) achieves one
iteration of Eq. (2). When an equilibrium distribu-
tion of positions )R) has been achieved after many
iterations, that distribution satisfies Eq. (2) and is
said to be sampled from Q. A demonstration that
the above procedure converges to the ground state
of H is described in Ref. 11. The exact ground-
state energy may be obtained directly, but general
structural information and correlation functions re-
quire the use of importance sampling and extrapola-
tion procedures. ' These results, although normally
accurate, cannot be said to be exact.

Since the Schrodinger equation does not contain
information about the Fermi or Bose statistics, the
standard GFMC method converges to the lowest-
energy positive-definite eigenstate, which cannot,
therefore, be antisymmetric. It has been stated'2
that if the location of the nodes (zeros) of the fer-
mion ground state is known, then the GFMC tech-
nique could be modified to obtain the exact ground
state. It is a property peculiar to one-dimensional
fermion problems that the ground-state nodes are
known when the number of fermions N is odd.
The only nodes in the ground-state wave function
are those which occur when two particles of like
spin occupy the same position. It is easily seen, by
solving the problem for N=2 and N=3 nonin-
teracting fermions, that the even-particle wave
function has extra nodes.

The appropriate modification of the GFMC
method when the nodes of the wave function are
known can be understood as follows. If the wave
function of X (for the moment spinless) fermions
is known in one region of the N-dimensional coor-
dinate space of particle positions where it is positive
and bounded by nodes, then it can be known in the
negative regions by the interchange of pairs of par-
ticles. There are normally N! such equivalent re-
gions. If one redefines the eigenvalue problem to
be restricted to this one positive region of space,
with the boundary condition that the wave function
go to zero at the node, then the original fermion
ground state satisfies this new problem, but no oth-
er lower-energy wave function can. It is then suffi-
cient to restrict Eq. (1) to one such region of space
by adding the additional boundary condition that
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the Green's function be zero at the nodes.
To implement a GFMC procedure, it is necessary

to develop a random walk which samples the
Green's function. It will become clear that the only
nontrivial obstacles to this are contained in the hop-
ping term. For simplicity, we first consider spinless
fermions. %e will denote the basis states consisting
of N particles on sites j~,j2, . . . , j& by

N

IJ) —= Ij),j2, . . . , j)v& —= gc', Io).
i=1

(4)

+ ~1M(i —1)) ~ (6)

Here VI includes the effect of the entire potential
(which is diagonal). The notation M(i 1) means
the state M with the i th particle moved one site to
the right (+1) or left ( —1).

By substitution of this expression for H into the
defining relation for G, Eq. (2), a matrix equation
for G results:

N

5I J X )2GI J Gl (Ji+ 1) GI J(i—1) ) + VJGI J.

This simple formula for G does not require explicit
antisymmetrization only when the number of fer-
mions is odd. The periodic boundary conditions
which allow subscripts like J(i +1) to take on
values outside of the ordered basis can then be
mapped back to the ordered basis with an even
number of particle interchanges. There are no sign
problems when the number of fermions is odd.

We may rearrange the terms in Eq. (7) to get an
infinite-series representation of the Green's func-
tion. A procedure for sampling a configuration I
from EGI J is akin to doing such an iteration by use
of a random walk. In order to interpret the various
coefficients in the random-walk equation as proba-
bilities for absorption or as probabilities of making a

The linearly independent subset which spans the
space of all N-particle states on L lattice sites may
be chosen to be the ordered set with j~ & j2

& jx.
The technical requirement that the eigenvalue

spectrum be positive is easily satisfied without
modifying the eigenstates by adding to Ha constant
diagonal term Vo+2N. Let

H H+ Vp+2X(ei c(. (5)

The matrix elements of H in the ordered basis are

(IIHI~) = VJpJM X lhJM( +1)
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move, it is convenient to add a tiuantity WGI I to
both sides of Eq. (7) before rearrangement. The
resulting equation for G which can be sampled by a
random walk is

51J 8 —VJ" 2N+W 2N+W

+ 2N GI,J(i+1)+ GI,J(i —j)
2N+ W,. i 2N

Multiplying this equation by a trial energy E leads
to three types of random-walk processes. Given an
initial configuration J, the first term says that the
configuration stays at J (i.e. , I= J) with likelihood
E/(2N+ W). The second term says that with pro-
bability ( W —V)/(2N+ W), we sample a value of
I from EGIJ. Since we may choose W= V, , this
term may be avoided. The movement of particles
occurs in the last term. With probability 2N/
(2N+ W'), we sample one of the 2N terms at ran-
dom, i.e. , change J to J(i +I) for random i and
sample I from EGIJ&;+t&. If J(i +I) is a confi-
guration with two overlapping particles, this term is
zero; if not, the sampling of G returns us to the
repetition of this process with a new configuration
J(t +I).

In practice several hundred configurations form
the ensemble representing the wave function. The
calculation proceeds by iteration of this ensemble
according to Eq. (2) until it converges to the
ground state. Each iteration requires that every
configuration in the ensemble move from its initial
location I to zero, one, or more final locations I as

required to sample EGI J. The unknown eigenvalue
E is determined by the condition that the number
of configurations in the population remain stable.

The extension of the above procedure to fer-
rnions with spin is straightforward. We would like
to report the results of this procedure for a few trial
cases, some of which have known analytical or nu-
merical results for the energy. Figure 1 shows that
if the on-site potential is zero, then the energy per
site for spinless fermions can be obtained to high
accuracy. The statistical uncertainty of these results
is less than the size of the symbol plotted. In this
and other results we have set t =1. For the ex-
treme values of V= +2, the correlation lengths
exceed the size of the lattice employed, so that
although the energy may be near the infinite-
system limit, structural information particularly at
large distances will be affected. There is no particu-
lar reason to limit this calculation to small systems;
the algorithm is extremely fast and the computer
requirements grow only linearly with N, not like N2

or N as is the case for some fermion calculations.
As a final example, the solution for the ground-

state energy with only the on-site interaction and
equal numbers of spin-up and spin-down fermions
is shown in Fig. 2. Exact results in this special case
have been calculated previously. 4 These agree
within statistical uncertainty with our Monte Carlo
results for all densities and interaction strengths as
expected.

In summary, we have described a Monte Carlo
procedure for obtaining exact ground-state proper-
ties of a certain class of Hubbard-like Hamiltonians.
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FIG. 1. Energy per site vs density with nearest-
neighbor interaction V= —2, —1, 0, +1, +2. V in-
creases from the bottom; N = 13.

FIG. 2. Energy per site vs density with on-site repul-
sion U=O, 2, 4, ~. Solid lines are exact results (Ref.
4) for an infinite lattice; the symbols are GFMC calcula-
tions for N=26.
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The method is quite general in that any potential
which is diagonal in both particle configuration and
spin can be treated with equal ease. The computer
time required to obtain the energy to an accuracy of
better than 1% was typically 15 min on a VAX class
machine.

Part of this work was done under the auspices of
the U. S. Department of Energy.
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