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Extended Thomas-Fermi Model at Finite Temperature
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We derive for the first time second-order gradient corrections to the Thomas-Fermi
kinetic-energy and entropy density functionals for a fermion system at finite temperature.
Density variational calculations for a heated nucleus with a Skyrme interaction lead to excel-
lent agreement with results of Hartree-Pock calculations.
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The gradient expansion of the kinetic-energy
density functional obtained in the extended
Thomas-Fermi (ETF) model' has found applica-
tions in many branches of physics. 2 For fermions
moving in a local potential V( r ) at zero tempera-
tures, it reads

r [p] = Kp'I ++6(Vp)'/p —,' Ap+ r—4[p], (1)

where tt= —,'(37r ) (including a spin factor 2),
and r4[p] contains up to fourth derivatives of the
density p. '3 4 The expansion (1) does not allow
reproduction of shell effects; it is, ho~ever, well
suited for systems where the shell effects play an
insignificant role or where they can be added per-
turbatively at the end of a variational calculation. 5

In the context of nuclear physics, it has been shown
that the inclusion of the fourth-order gradient
terms r4[p] is indispensible in order to yield both
correct energies4 and density profiles in variational
calculations. 6 The expansion (1) is an asymptotic
one. The sixth- and higher-order gradient terms
diverge for densities which fall exponentially to
zero, and must therefore be left out. A problem
lies in the fact that all gradient corrections can only
be calculated inside the classically allowed region de-
fined by h. & V( r ) (X is the Fermi energy). At
the classical turning points and beyond, the semi-
classical h expansion'7 of the densities p( r ) and
r( r ) is not defined and the functional r [p] cannot
be determined. It has so far been assumed to be the
same as inside the classically allowed region, invok-

ing analytical continuation. (See Ref. 4 for a de-
tailed discussion. ) As I shall show below, that as-
sumption is wrong, although this has only little ef-
fect on the results in practical applications.

In this Letter I shall present the functionals r [p]
and o.[p]—the latter giving the entropy density—for a system of fermions at finite temperature
derived consistently up to second-order gradients of
p. The limit of zero temperature then allows us to
examine the validity of the functional equation (1).

Let us briefly sketch the derivation. At finite
temperature, the densities 7 ( r ), p( r ), and o.( r )
are defined by

p(r ) =X„I&„(r )I'n„,

r( r ) = —X„g„'(r )Att „(r ) n„,

S=Jtd3r o( r )

= —X„[n„inn„+ (I —n„)ln(1 —n„) ],

where e„and $„( r ) are the eigenenergies and
eigenfunctions of the chosen potential V( r ). S is
the entropy and n„= [I+exp(li. —e„)/T] ' are the
Fermi occupation numbers. (We put lc—= 1 and
measure Tin energy units. ) The Fermi energy li. is
fixed by the particle number N= X„n„. We also
define a free-energy density I'( r ) by

F= E —TS = X„r„rr„—TS =fd~ ra ( r ) .

The Bloch density C( r, p) is related to p( r ) by
an inverse Laplace transform:

p( r ) =~„'[C( r, P)/P] = (2m i) 'Jt e"PC( r, P)P ' dP (c & 0). (2)

It can be shown to factorize in the form C( r, p) = Cti( r, p) fT(p), where Cii is the Bloch density at T=0,
i.e.,

Cti( r, P) = X„IP„(r ) I'exp( —Pe„),

and fr(p) = m p Ts/i (nor Tp) is the (two-sided) Laplace transform of the function with which one has to fold
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the T= 0 spectral density to pass to the T ) 0 case. Using simple rules of Laplace transforms one finds the
relations

P ( r ) = imp( r ) —~ ' [C( r, p)/p~], a ( r ) = —(8/8 T)&~( r ) = (6/8 T)&„ t [C( r, p)/pz],

(it2/2m) r ( r ) = —p ( r ) V( r ) + P ( r ) + Ta(r .) .

These equations are exact if the exact Co( r, P) is used. We now replace Co by its Wigner-Kirkwood ex-
pansion up to orders:

' 3/2

Cwx ( ~r P) 4 all 2P
e t' ' ' ' 1+ [ —'P'(V V)' —P'6 V]

12m

After the Laplace inversion in (2) we find for the density6

1 e'
p( r ) =AT Jt/2(n)+ [T b, VJ 3/2(n)+ —,

' T ('7V) J s/2(n)],24 2m
(3)

where

Ar=(2m ) t(2m/lt )3/ T3/ rt= [X—V( r )]/T,

and J~(q) are generalizations of the so-called Fermi integrals, defined for p & —1 by

For p ( —1, where this integral does not exist, we define Jv(q) by the relation

Jv(n) = „Jv+t(71) (p & —1),1 d
p+ 1 d71

which leads to well-behaved functions Jv(q) for all values of p used here. Thus at T & 0, the density p( r )
given by (3) is continuous and finite in all space and we do not meet the turning-point problem known from
the T= 0 case. Analogous expressions are found for w ( r ), o-( r ), and v ( r ); they are explicitly given else-
where. 6 9 With some algebra one can eliminate 5 V and (V V)2 from these expressions and from Eq. (3)
consistently up to order f . As a result we find the temperature-dependent extended Thomas-Fermi (TETF)
functionals (for the detailed derivation, see Ref. 9)

rTarF[p] = (2m/it )ATTJ3/2(Yi)+y(71)( 7p) /p —6/sp,

~TETF[p] = , ATJ3/2(n) n—p T'(/t'/—2m)v—(71) (7p)'/p (5)

Here q(p, T) is an explicit function of p and T, given by p =ATJt/2(q). The coefficients y and v in Eqs. (4)
and (5) are universal functions of 71 given by y(q) = ((71)—v (q) and

v(n) 2 ((n) 36[5(n)] + 8 Jt/2 (n) J-5/2(n)/J t/2 (n) k(n) $p Jl/—2(n) J—3/2(n)/J t/2 ('n)~—
The leading-order terms in (4), (5) are the famil-

iar Thomas-Fermi expressions. '0 The gradient
terms have the same form as in the T= 0 case but
with density- and temperature-dependent coeffi-
cients. It is interesting to study their limits for
T 0. Using known asymptotic expansions of the
Jv(n), we find that v(n) always goes to zero faster
than T, so that the entropy density vanishes as it
should. $(n) and y(n) go to the value —,', inside

120

I

the classically allowed region (i.e., for q +co)
and to —,', outside (i.e., for q —~). Thus, the
functional r[p] is not analytic at T=O; the coeffi-
cient of the Weizsacker correction jumps from 36-

to —,', as one crosses the classical turning point.
This discontinuity has consequences for the Euler-
type variational equation which will be discussed
elsewhere. For the present we note that if the ener-
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gy is calculated from parametrized trial densities, it
has very little influence whether one uses 36 or —,',

in the outside region, since in realistic cases the
turning point lies rather far out in the tail of the
density. We have checked that for systems with
% & 100, the difference amounts to less than—10 4 of the total kinetic energy.

The functionals in Eqs. (4) and (5) are valid for
any system of fermions moving in a local average
(external or self-consistent) potential at finite tem-
perature, except that they do not account for possi-
ble shell effects. They might be useful in different
fields of physics. As a first application to nuclear
physics, we have performed density variation calcu-
lations for the thermal properties of the nucleus

Pb. We employed the effective Skyrme
nucleon-nucleon interaction SIII which was used
earlier in Hartree-Fock (HF) calculations" at
T )0. For this case we have to include corrections
to Eqs. (4) and (5) due to the variable effective nu-
cleon masses and the spin-orbit potentials; they can
also be derived consistently up to second-order gra-
dient terms. The fourth-order gradient correc-
tions, which it would be hopeless to derive by hand
in the T & 0 case, were treated approximately just
by use of 74[p] as known from the T= 0 case.
The variational calculations were performed as
described in Ref. 6 with trial nucleon densities of
Fermi-function type, determining their parameters

a,rr= ,' dS~/dE'= S—/2T; (6)

the latter asymptotic equality is found from the rela-
tjont~ E'= aoT AE. Figure —2 shows a,rr vs E",
again calculated for Pb in the two approaches.
The semiclassical curve is seen to coincide perfectly
with the HF curve above E'=100 MeV corre-
sponding to T=2.5 MeV for this nucleus. The
difference at smaller E' is due to the shell effects
contained in the HF result. Both quantities ap-
proach asymptotically the value ap. [The slight de-

by a minimization of the total free energy. The
results are compared to the old HF results" in Figs.
1 and 2.

In Fig. 1 we show the neutron and proton rms ra-
dii for Pb as functions of the excitation energy
E'=E(T) —E(0) obtained in both approaches.
The agreement is seen to be excellent; the TETF
results reproduce the HF ones within less than 0.2%
for all excitations shown here. (One cannot extend
this range of excitation energy without taking into
account the formation of an external nucleon gas
due to nucleon evaporation. to)

An important quantity for an excited nucleus is
its entropy. According to the Fermi-gas theory, ' it
depends on the excitation energy asymptotically like
S = 2[ao(E'+ hE) ]'i (for E' » ihEi), where
b, E is the ground-state ( T= 0) shell correction and
ao=n g(X)/6 is the usual level density parameter.
[g(h. ) is the average single-particle level density of
the cold system. ] We define an "effective level
density parameter" a,~ by
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FIG. 1. Root mean square radii of the neutron and
proton distributions in Pb, plotted vs excitation energy
E". Solid lines: HF results (Ref. 11). Dashed lines:
results of density variational calculations using the
present TEFT functionals. (Note the large scale for the
radii!)
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FIG. 2. Effective level density parameter a,ff, Eq. (6),
for ' Pb vs excitation energy E". Solid and dashed lines
as in Fig. 1. Dash-dotted line: density variational results
obtained in the low-temperature approximation.
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viation at large F.' is due to the fact that g (X) is not
constant as assumed in the Fermi-gas model. ] Also
shown in Fig. 2 is the result obtained in the so-
called "low-temperature" approximation. The
latter is found in the limit T (& A. —V, i.e., by ex-
panding Eqs. (4) and (5) for r) » 1. This limit is,
however, not fulfilled in the nuclear surface, even
at low temperatures. The bad result seen in Fig. 2
is therefore not surprising.

%e have recently studied' an approximation in
which the correct TF functionals for T ) 0 were
used and the "cold" gradient corrections r2[p] and
r4[p] were added. ' Although reasonable results
were obtained for Pb, a discrepancy of —7%
from the HF result of a,ff remained. This error can
be traced back to the lack in that approach' of a
gradient correction to o-[p]. Its contribution to the
entropy S is found here always to be negative and to
decrease in absolute value from —10 at T=1
MeV to —6 at T=5 MeV. Its relative smallness
(except at very low T) seems to justify our present
neglect of the fourth-order corrections to tr[p].
The gradient term in (5) turns out to be crucial in
the semiclassical calculation of fission barriers.

In summary we have derived for the first time
the second-order corrections to the density func-
tionals r[p] and o.[p] with their correct
temperature-dependent coefficients. Different
from the T=O case, these gradient terms are
rigorously defined and analytical everywhere in
space. In density variational calculations for a finite
nucleus we obtain excellent agreement with HF
results, in particular at temperatures ( T & 2.5
MeV) where there are no more shell effects; the in-
clusion of the gradient corrections is decisive in ob-
taining this good agreement. The variation TETF
method with trial nucleon densities is thus an excel-
lent substitute for the much more costly microscop-
ic HF method. Its advantages will be particularly
gratifying in the calculation of the equation of state
of hot nuclear matter with mixed gaseous and liquid
(condensed) phases such as plays an essential role
in the collapse of massive stars. ' The problem of

correctly treating the continuum, which one meets
in HF calculations, is completely circumvented in
the variational TETF method dealing only with lo-
cal densities. Applications in this direction and cal-
culations of temperature-dependent liquid-drop
model parameters' using the new functionals are in
progress.

The use of the ETF code worked out in collabora-
tion with C. Guet and H. -B. Hakansson and en-
couraging discussions with J. Bartel and C. Guet are
gratefully acknowledged.
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