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An exactly solvable generalized dimer model is proposed. In one limit this model is the
isotropic Ising model and in another limit it is the anisotropic Kasteleyn model with radically
different critical behavior. The value of the crossover exponent ¢ near the multicritical point

is determined to be —;

The proposed model is isomorphic to a domain-wall model with

dislocations, thereby providing an example of dislocation-mediated crossover in uniaxial

commensurate-incommensurate transitions.

PACS numbers: 64.60.Kw, 05.20.—y, 05.70.Jk, 64.60.Cn

Consider, for the lattice in Fig. 1(a), the partition
function

Z(uv,w)=3 ulviv’,
states
where each state consists of a complete covering of
the lattice by dimers such that each lattice site is
connected by a dimer to one and only one of its
nearest neighbors. Dimers covering the edges la-
beled u, v, and win Fig. 1(a) have different ener-
gies €,, €, and €, such that the activities
(Boltzmann factors) are respectively u, v, and w.
The numbers of dimers covering the -, v-, and
w-type edges are respectively p, ¢, and r with
p+q+r=N/2, where Nis the total number of lat-
tice sites. Because of this constraint there are only
two parameters in the model and so there is no loss
in generality in setting w=1 (i.e., €,,=0). One of
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FIG. 1. (a) The lattice for the proposed dimer model
where u, v, and w refer to the activities of the edges.
Without any loss of generality w can be taken to be 1. A
unit cell is shown by the dotted lines. (b) The K model
on the brick lattice.. The horizontal edges have activity x
and the vertical edges have w which can again be taken to
be 1. By connecting the centers of the horizontal dimers
(thick lines) one gets the domain walls (dashed lines)
with p=1. (See text.)

the remaining parameters is eliminated by specify-
ing the temperature 7 on the energy scale of the u
dimers as €,/kT= —Inu and the final parameter
can be thought of as e€,— ¢, or, equivalently, v/u.
This generalized dimer model becomes a specific
model as a function of T when v/u is specified.
Furthermore, since this is a planar model it can be
solved exactly by the Pfaffian technique.!

For the case v/u =1, the generalized model be-
comes the nearest-neighbor isotropic Ising model on
the brick lattice (except for some trivial factors).
This is easily seen from the one-one correspon-
dence of the dimer state at each vertex to the high-
temperature ‘‘hyperbolic tangent” expansion of the
partition function of the Ising model? (Fig. 2). As
is well known,! the exact thermodynamic behavior
is a logarithmically diverging specific heat |«
=0(log)] at 3u?=1.

Now consider the case v/u=0. For this special
case, Fig. 2 shows a transformation to a simpler di-
mer model on the brick lattice shown in Fig. 1(b).
The partition function for this latter model is just
Zx=3x?/? where x=u? and the sum is over the
allowed states. This model, called the K model,® was
first solved by Kasteleyn* who showed that the
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FIG. 2. (a) City configurations for the proposed
model. (b) The equivalence, for v=u, with the bond
configurations on the brick lattice for the Ising partition
function. (See Ref. 2.) (c) The correspondence, for
v=0, with the K model of Fig. 1(b). NA stands for ‘“‘not
allowed.”
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specific heat is zero for x < x,= 4 and diverges with
an exponent a=+ for T> T,, i.e., x > x,. This
behavior, which has been called® a 3 order transi-
tion, is so radically different from the Ising-like
behavior that it is quite natural to think of these two
models as belonging to two different universality
classes. Every model>*>% with a phase transition
that has been solved exactly by the Pfaffian tech-
nique belongs to one or the other of these two
classes.

The K model is also of current interest because it
is a special case”® of domain-wall models® [Fig.
1(b)] of wuniaxial px1 commensurate-incom-
mensurate (CI) transitions where p is the number
of distinguishable phases. Each domain wall must
proceed along the vertical direction and is forbidden
to end or to meet another wall. In terms of the
p %1 CI classification scheme the K model has been
described”-? as a p =1 model because the phases on
either side of a domain wall are indistinguishable.
This phase degeneracy does not reduce the value of
the K model in providing critical tests of general
theories of px1 CI transitions. For instance, the
exponent B, which describes the average spacing /
between domain walls as the reduced temperature
t[=(T-T,)/T,]— 0 according to [/~t7% s
predicted’ to be % in two dimensions independent of
p. For the K model the internal energy is propor-
tional to 1//and so B=a=+. Therefore the gen-
eral theory of px1 CI transition is in accord with
the exact result for the X model.

The new generalized model also has a domain-
wall analogy as shown in Fig. 3. For nonzero values

= —KkTN~'InZ = — 1<T(247r2)—1f2"f2’r Inlgo+ 26y + y?1d6,d6,,
0 0

where

go=1+2x%+2x2cos(6;—6,) — 2x(cosh, + cosh,),

2

b=x(cosf;+cosh,) —cos(6,—0,), x=u?

The critical point is determined by the equation
2x + y =1 when the argument of the logarithm van-
ishes for ;=0,=0. The phase diagram is shown in
Fig. 4. The transition is Kasteleyn type for y=0
and Ising type if y # 0. Our focus is on the mul-
ticritical point!! at x=4, y=0 (to be called the
Kasteleyn poinf) where v (or y) is a relevant vari-
able!! because it changes the transition behavior
radically.

Near the multicritical point, the free energy f is
expected to have a scaling form!! of the following
type:

f=027Wi(y~2) (2)
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FIG. 3. Domain walls in the new model are obtained
by connecting the centers of the vacant horizontal
w(=1) type edges. If a v-type dimer is present the walls
are said to meet and annihilate each other at the center of
the triangle, as at P. Excitations of type A4 are called lo-
calized excitations. Neither these nor the P dislocations
are allowed in the K model.

of v the walls can meet and annihilate in pairs at the
centers of the triangles as at P. These points
represent the dislocations’ in the domain-wall
model, with activity v. Domain walls of finite
lengths (represented by A in Fig. 3) destroy the
low-temperature frozen behavior of the K model,
introducing critical fluctuations!® as 7T— 7,—. In
order to study the crossover from a model with
dislocations to one without, the thermodynamic
behavior of the free energy near 7, will now be
considered as a function of v.

In the thermodynamic limit the free energy f of
the new model, derived exactly by the Pfaffian
technique, is!

1)

2

y=v-

r
in the limit v— 0 and t— 0. W 4 are the scaling

functions for ¢t 2 0 and ¢ is the crossover exponent
for v. The exponent « is ’7 for the K model. Since
v is a relevant variable near the Kasteleyn point,
the exponent ¢ must be positive.!! For simplicity
we consider only the function W_ since the ex-
ponent ¢ is expected to be the same on both sides
of T,.

The strategy to determine ¢ is to expand W_(z)
in powers of zso that, from (2),

f=3,m 2w (D (0)y" nt, 3)
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FIG. 4. Phase diagram in the (x,y) plane. The transi-
tion is Kasteleyn or commensurate-incommensurate type
for y =0, for which dislocations are not allowed, and Is-
ing type for y 0, for which dislocations are allowed.
The point K = (3,0) is the multicritical point, called the
Kasteleyn point. C represents the commensurate phase
and D the disordered phase.

where W (z) is the nth derivative of W_(z)
with respect to z. The exponent ¢ can then be
found from the leading ¢ dependence of the coeffi-
cients of these terms.

To obtain a form of the type (3) from (1), note
that the temperature-dependent part of the coeffi-
cient of y" is the double integral over 6; and 6, of
(y% +y™)/gk where vy 4+ are the roots of the quad-
ratic equation y*+2by+go=0. For n=1, this
double integral of b/gy can be evaluated exactly for
x < ¥ by transforming each of the integrals into a
contour integral. The leading ¢ dependence is found
to be /2 giving ¢ = +. For arbitrary n, the leading ¢
dependence comes from a region close to 6;=6,=0
where go=0 for x=+. Expanding the integrand
about the origin in the 6,, 6, plane, one can in fact
show that the leading ¢ dependence of the nth term
of (3) is t~"*+¥2, This proves that y/tis the scaling
variable in all orders of y.

The shift of the critical temperature also shows
that the crossover exponent ¢ is 5. The scaling
form (2) requires!! that the shift #, in the critical
temperature should go as v'/% as v— 0. From the
exact phase boundary, we find that near the
Kasteleyn point, x— 4 and v— 0, this shift is
given by

e~ (1-2x)~y=v?
which identifies ¢ = 7.

The value of the crossover exponent (¢ = %) is

in disagreement with the formula ¢=(6—p?)/4

given by Huse and Fisher!? if the previously pro-
posed value”8 of p=1 for the K model is used.
This disagreement is more apparent than real be-
cause it was assumed by Huse and Fisher that pre-
cisely p walls meet at a dislocation point of a px1
model. Since the proposed dimer model involves
pairwise annihilation of the walls, p =2 should be
used in the formula of Huse and Fisher. It may be
desirable to introduce two symbols, (i) p for the
number of distinct phases and (ii) ¢ for the
minimum number of walls that can meet at a point,
so that the general formula of Huse and Fisher in-
volves g and not p. For the K model ¢ =2 even
though p=1 and therefore the exact value of the
crossover exponent agrees with the general formu-
la.

The behavior of the correlation functions of the
K model is also radically different from that in the
Ising model. Indeed, an order parameter related to
the correlation function has not been identified® for
the K model. It will be the object of future work to
investigate the crossover of the order parameter and
the correlation functions as the Kasteleyn point is
approached. Such studies should also determine
the critical index m which has been predicted to
depend® on p.
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