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It is observed that all solutions to the quasilinear ideal fluid flow equations [(p
+ c 2p) u„u„l „=—p „with p =p (p) and u„u„=——c2 can be classified algebraically in terms
of three basic types of solutions and combinations thereof. This classification engenders the
definition of symmetric flows, a broad class for which a general intermediate integral is derived
here by application of the Frobenius integration theorem. Representative exact analytical
solutions are presented.

PACS numbers: 47,10.+g, 03.40.6c, 47.75.+f

Nonlinear partial differential equations (NPDE)
which admit linear-equivalence mappings' gen-
erally feature only two independent variables (e.g. ,
x and t) and are quasilinear in the sense of being
linear in the highest-order partial derivatives with
respect to the two independent variables; exten-
sions of such mappings for two- and three-
dimensional x do not result in associated linear
equations. Thus, the linear-equivalence solutional
method' cannot be extended directly for three or
four independent variables.

Can one formulate an analytical integration pro-
cedure which makes use of the structura1 aspect of
quasilinear NPDE for cases of more than two in-
dependent variables? In particular, can the first-
order quasilinear homogeneous character of the
ideal fluid flow equations, which engenders lineari-
zation by the hodograph transformation if and only
if the flow is one dimensional, be utilized in an
analytical integration method for the cases of two-
and three-dimensional time-dependent fluid flows?
In this Letter I present an efficient analytical solu-
tional method which does indeed utilize the first-
order quasilinear homogeneous character of ideal
fluid flow while side-stepping the untractable non-
linearities of a hodograph extension.

Consider a relativistic ideal fluid flow governed
by the equations4 5

n=n(f) —= 2[(dp/dp)+ c'] 'dp/dp

is a function of the scalar quantity

(4)

f= ( —f f)' =—( ——f f )' '=(c'p+p)'' (5)

and the relation f„f„„= ff„ is emp—loyed.
Linear homogeneous in the first derivatives of the
flow vector, Eqs. (3) can be solved algebraically for
f„„;in the general case one obtains

(6)

space-time coordinates x= (xt,x2,xs) and x4—= ict.
For specialized equations of state (principally

p = —,
' c2p), one-dimensional time-dependent and

two-dimensional steady solutions to (1) have been
derived by the Riemann, self-similarity, and
stream-function methods. 7 The present communi-
cation reports exact analytical solutions to (1) for
general equations of state p =p (p).

One starts by introducing the timelike flow vector

f„-=(p+.-'p) «zu„ (2)

with four independent components. In terms of (2),
Eqs. (1) become

f„,.f, +f„f...=nf.f.,„
where

[(p+c 'p)u„u„] „=—p„ (1)
where

in which the proper mass density p (including both
material and internal energy density of the fluid)
and proper pressure p are related by an algebraic
equation of states p =p(p), the fluid velocity v
is related to (u&, uz, us) = u by v = (1+c
x u z) 'i2u or equivalently u =—(1—c
x V z) '~ V, the quantity u4 ———i(iud +2c )'2(so
that u u —= u„u„—= —c2), and subscripts after com-
mas denote differentiation with respect to the

W„(» =g[5„„+(2-n)-'(S-n)f-'f„f„], (7)

A„(vi = f„rt„+nv)„f„, rt„f„=0, (8)

(„.f.—=f.(.„=—0 —=(.. (9)

Involving one, three, and eight parameter functions
respectively in g and the linearly independent com-
ponents of q„dafn„„, the tensors (7)-(9) have the
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trace values and orthogonality properties

A„J = 3((2— ) '(1 —n),
(10)

g (2) g (3) 0

w(„')w(j) =~(„')w„(~) =0 for I A J. (11)

The representation (6) for f„„satisfying (3) is
complete and unique because (10) implies that

g= —,
' (2 —n) (1—n) 'f„„, (12)

3

df„= XA„t„'l dx„, (14)

one must fix the quantities (, q„, and („„ in
(7)-(9) in a manner that satisfies the exterior prod-
uct integrability conditions

3

d(df„)= I dW&|l nd „=0 (15)
I=1

while (12) and the contraction of (6) with f„pro-
duces

7l„=f 'f„—(1—n) 'f f„f„„. (13)

Hence (7) and (8) are unique correspondents of a
flow vector field f„, and (9) then follows as
A„3 =f„„—A„—„' —A„t2 . A flow is purely of type
3, i.e., f„„=A t3l, if and only if the proper density
is uniformly constant through space and time.

Proof. —f= const im—plies f„„f„+f„f„„=0by
(3), and contraction of the latter relation with f„
yields f„„=0,which makes the quantities (12) and
(13) vanish.

To obtain a flow-vector solution by integrating
the differential form associated with (6),

fdf=3(2 —n) 'g(f dx). (17)

The latter relation can be used to eliminate (f dx)
from (16), which becomes

df„=( dx„+ —,
' (5 —n) f„f ' df.

Hence (15) states that

dg n dx„+ —,
' (5 —n) f-'df„ndf =0

(18)

(19)

because dn n df = (dn/df) df n df = 0. By substi-
tuting (18) into the second exterior product on the
left side of (19), one gets

[d( ——, (5 —n)(f ' df) n dx„=0,

which implies that

(20)

(=8of'"mp) ——,
' f (l, )z 'dx] (2))

0

with pa=const. The general integral to (18) is
therefore

f„=g (x„—k„), (22)

where k„denotes a constant vector of integration.
Finally, one obtains an implicit equation for f as a
function of the space-time coordinates by squaring
(22):

that follow from (14). The analytical procedure for
satisfying (15) is often straightforward, as illustrat-
ed by the example of purely type-1 flows, i.e., those
for which q„=—0=—(~„. For such flows (14) and (7)
produce

df„= g dx„+ (2 —n) '(5 —n)(f f„(f dx)

(16)

and by contraction of (16) with f„one obtains

(24)

f
(x —k) (x —k)= f'( '= —(a'f ''—exp[ —', J n(Z)l). 'dZ]. (23)

This general solution for purely type-1 flows depicts a radially symmetric disturbance in the fluid that either
expands from or implodes to the singularity at x„=k„. Directly expressible in terms of the primary variables
by the recalling of (2), (4), and (5), the exact solution (22) and (23) can be specialized for relativistic astro-
physical phenomena of contemporary interest. 7 In the classical limit c~ ~, the solution (22) and (23) satis-
fies the spherical wave equations of classical compressible flow theory. 9

For a broad class of more general flows the task of satisfying (15) is facilitated by the following.
Theorem. For symmetric flow—s characterized by („„—= g„„,the flow vector is expressible as

f„=f(exp[ —Jt n(A. )l). ' dl). ]jP

with $ a real scalar function of the space-time coordinates.
Proof. The substitution of—(7)—(9) into (14) produces

df„= (dx„+ [n7i„+ (2 —n) '(5 —n) gf f„)w&+ f„w„+i;~„dx„,
where

wy = (f ' dx ), w& = ()l ' dx )
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are differential forms. By taking the contracted ex-
terior product of (25) and dx„, one obtains'0

df„h dx„= (1—n) w„A wf

for f„„=—(„„.Thus

dwf = df„h dx„= [(1—n) w„] A wf,

(27)

(28)

which by the Cartan-Frobenius integration
theorem implies that

(29)

for certain real scalar functions Q and Q. The form-
er function is determined by contracting (25) with

f„to get

w„=f ' df —3(2 —n) '$f 2wf (30)

and substituting (29) and (30) into (28); the result-
ing equation yields

Q
= f(exp[ —

Jl n(X)X ' dA. ]} (31)

to within a multiplicative factor that can be ab-
sorbed into the definition of P. Hence (24) follows
from (29) and (31).

Corollaries. The—quantity g„ is given by (30)
and (24) as

(32)

in which a„and b„are constant orthogonal timelike
and spacelike unit vectors (a a = —1, a b = 0,
b b = 1) and Ra, k, k' are scalar constants. By
putting (35) into (24), one finds

f(= ——,'(2 —n)(exp[ —
Jt, n(Z)) -'d) ]}y„f„,

(33)

f
7l„=f 'f„—3(2—n) '(f '(exp[ —Jt n(~)~-t dA. ]}y„.

But since g„f„=0 according to (8), (32) implies
that

where use has been made of the square of (24);
f

P „P „=—exp[2 Jt n(A. )t 'dA. ]. (34)

It is easy to verify that (32) and (33) are consistent
with (13) and (12).

Expression (24) is a general intermediate integral
to (25) for symmetric flows. In the following
representative symmetric flow solutions, Q and f
have been determined by Ansatz to satisfy (34) and
the integrability conditions (15).

(a) Purely type-2 flows ($—=0=(„„)with

Q=Rotanh '[(a x+k)/(b x+k')], (35)

and fgiven implicitly by

t f —1R & exp [ —' n ( jl. )X dX ]Jp

= R =—[(b x+ k') —(a x+ k)']'i

f„=[a„cosh(@/Ro) —b„si nh(@ /Ro) ]f (37)

and (25) is satisfied exactly with (—= 0 =—( „and

g„=n 'R ' a„sinh —b~ cosh
0

P = —,
' kr tan '[k(a x)/(x x) ], (39)

fgiven implicitly by

(38)
The remarkable feature of these purely type-2 sym-
metric flows is that they are admissible for arbitrary
p= p(p) relations, as manifest in the disposability
of the function n (f) .

(b) Type 1+2 flow ($„„=—0) with

'l

2

2(x x) + k = ~ exp[ — n(A. )X ' dX],
X 'X 0

i

and n(f) such that

(40)

f
(2 —n) '(1 —2n)exp[ — n(X)X 'dX] =7 '—= const. (41)

In (39) and (40) a„ is a constant timelike unit vector (a a= —1) and kis a scalar constant. The substitu-
tion of (39) into (24) produces

f„=[a„—2(x x) '(a x)x„]f (42)
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and (25) is satisfied exactly with („„=—0,

g= -2f(x x) '(a x),

f„=k„+ l~ cos0+ m„sinH,

(„„=(m„cosH —l„sin&)& „, (47)

in which k„,l„,m„are mutually orthogonal constant
vectors subject to the conditions k k ( 0, j t
=m m) 0, k l=t m=m k=0, and 0 is a
scalar space-time function which varies in the
fourth space-time direction: k„0 „=l,0 „=m„0,
=0.

(b) Constant-density shear flows with

(48)

(49)

f„=k„coshcu+ l sinhcu,

(„„=(k„sinhtu+ l„coshtu) tu „,
in which k„,l„are mutally orthogonal constant vec-
tors subject to the conditions —k k = l l ) 0,
k t = 0, and cu is a scalar space-time function which
may vary in the two space-time directions orthogo-
nal to k„and I„: k,~,= I,co, = 0. With the quan-
tity (5) identically constant, these analytical solu-
tions for purely type-3 flows are the relativistic
correspondents of the constant-density and
constant-pressure vortex and shear flows of classical
compressible theory, for which u = const
x (cos8(x3), sin0(x3), 0) and u =const& (0, 0,
sinhtu (xt,x2) ) in particular Galilean frames of
reference.

These representative exact solutions illustrate the
efficiency of the analytical solutional method. Since
this Cartan-Frobenius integration method is princi-
pally rooted in the quasilinearity of Eqs. (13) and
can be generalized for extra inhomogeneous terms
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v)„=2m '(x x) 't(x a)a„—[I+2(x x) '(a
In order for (41) to hold for all f, the equation of
state must be such that

tx 3(2 n—) '(1 —2n) =constx f2, (45)

as found by differentiating the logarithm of (41)
and integrating the resulting equation. Thus, the
simple flow (42) of type 1+2 requires a rather
complicated equation of state.

Equations (25) and (15) can also be solved by
Ansatz for nonsymmetric flows characterized by

For example, in the case of constant-
density purely type-3 flows ((—= 0 —=q„), (25)
reduces to

df„= („„dx„, (46)

and exact solutions are readily obtainable for („„
that satisfy the conditions in (9). Two examples are
the following.

(a) Constant-density vortex flows with

x)']x ).
(43)

(44)

(that do not contain a highest-order partial deriva-
tive), it would appear that similar treatments are ap-
plicable to the higher-dimensional forms of many
quasilinear NPDE of practical importance.
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