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Retarded Long-Range Interaction in He Rydberg States
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We calculate the energy shifts, in Rydberg states of helium, due to retardation corrections
to the two-photon exchange potential. The correction to the level spacings is at the accuracy
of existing measurements in the n = 10 states of neutral He. It may soon be possible for the
first time to detect the effect of these corrections in atomic systems. Estimates of the energy
shifts for high-Z He-like ions yield effects of several percent of the total spacing.
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It is over 35 years since the first calculation of re-
tarded van der Waals interactions was done by
Casimir and Polder.! While there has been substan-
tial theoretical progress’ concerning these interac-
tions, little has been done to observe them, except
for macroscopic systems such as small mica plates.’
The reason for the difficulty in observing retarded
van der Waals interactions in atoms is that the re-
tarded form of these interactions differs significant-
ly from the nonretarded form only at large dis-
tances, typically many tens of atomic units, where
the interaction energies are themselves very small.

Recent measurements of transitions in He Ryd-
berg states* have reached the degree of accuracy at
which the difference in retarded and nonretarded
interactions between the Rydberg electron and the
core might be observable.’ For some such transi-
tions, the accuracy of the measurements is a few ki-
lohertz, and further improvements can be expect-
ed.® Theoretical calculations of the transition ener-
gies due to nonretarded interactions have been per-
formed to a similar accuracy for some states.” It
therefore seems timely to calculate the effect of re-
tardation on Rydberg energy levels to an accuracy
of 0.1 kHz. This can be done for hydrogenlike
cores, with formalisms that have been previously
developed.®?

Since the total retarded van der Waals potential is
complicated, it is useful to focus on those terms
that can contribute to He Rydberg energy levels at
the accuracy of 0.1 kHz. For the states of interest,
the distance (R) of the Rydberg electron from the
core is of the order of 100a, where a is the Bohr ra-
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dius. This means that the ratio a/R is of the same
magnitude as the fine-structure constant «. Since
0.1 kHz is about 10~ !# Ry, if a term in the interac-
tion behaves as «"(a/R)™ Ry in the region of in-
terest, then in order to calculate the energy shifts to
the required accuracy, we can drop terms for which
n+m >7. This criterion allows the neglect of
many of the terms in the general expression for the
interaction, given in Ref. 8. However, it is not con-
venient to use an expansion in a/R for the actual
calculations of the terms that we keep. To the re-
quired accuracy, it turns out that we need only keep
terms involving the electric structure of the He™
core. Furthermore, among these terms, multipoles
beyond the octupole are again too small to keep.
Within these restrictions, it would be possible to
carry out a complete calculation of the energy
shifts, using our previous formalisms. However,
we have not done quite that in this paper. Instead,
we make use of the very precise calculations of the
nonretarded energy shifts by Drachman.” The ad-
vantage of this is that we need not consider
separately some terms calculated by Drachman that
go beyond the two-photon—exchange interaction of
our previous work. The price that we must pay is to
understand which of the terms calculated by Drach-
man are included in our general formalism, so that
we avoid double counting. This is straightforward
within the accuracy of our calculation. A more gen-
eral solution to the question of how to calculate en-
ergy shifts due to multiphonon exchange is more
subtle, and will be described elsewhere. Here we
present an outline of our calculation, and the
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results for the energy shifts in Rydberg helium and tions to this formula, coming from the fact that the

heliumlike atoms. core is charged rather than neutral, are very small
To the required accuracy, the energy shifts in the and can be neglected. This formula can be summa-

Rydberg states of heliumlike ions, arising from rized as

two-photon exchange between the inner hydrogen- m

like ionic core and the outer Rydberg electron, can Vay= 2 VayEn s ¢))

be obtained from a previously derived formula for n=0

. 8 )
the potential for such an exchange. The COITEC- | with the potential in Hartrees given by

1% __i—_aE'znﬂ 1l _«
2y,E,n — 2 R4+2n 41 R5+2n

2n +3 a  d¥ f«, do PEa(0)
3 16w2R dR* (Y0 7w  wR*
Here a ), +1 is the static electric multipole polarizability for the core ion, and pg , is the coefficient of " (¢is

the invariant momentum transfer) in a power-series expansion of the absorptive part p.(w,t) of the electric
form factor for the scattering amplitude of a photon of energy w by the ion, i.e.,

pp(0 )= 3 prnla)m. 3)
n=0

JE((DR) . (2)

aE,2”+1

The function Jg (wR) is given by
Jg(2) =% L 13+ (3-522+21(22) + (62 —223)g (22) 1, (4)

where the functions f(z) and g(z) are the auxiliary functions for the sine and cosine integrals, given by
Gautschi and Cahill.!°

The contribution of similar magnetic terms, discussed in Ref. 8, are too small to be of interest in neutral
helium.

We can identify the first term in Eq. (2) as the classical electrostatic interaction between the Rydberg elec-
tron and the induced multipole moment of the ionic core. For the dipole and quadrupole, corresponding to
n =0 and n =1, the effect of these terms has already been included in Drachman’s calculation. For n =0,
the second term in Eq. (2) coincides with the result found by Kelsey and Spruch® and by Bernabeu and Tar-
rach!! for the asymptotic correction to the classical term. However, we will see that for the distances in-
volved in existing measurements on Rydberg helium, this term by no means gives an accurate estimate of
the correction to the potential.

To make contact with Drachman’s calculation, we examine the expansion of J; for small arguments:

=gl _ 24T 2p2
Jg(wR)=38 ok 4 + 2wR + 0 (0?R?)]. )

If one substitutes the first term in this expansion into Eq. (2), one recovers, for n =0, Drachman’s non-
adiabatic 8 term, and for n=1, his B8, term. The terms generated by higher values of z in the sum! give
higher multipole analogs of the nonadiabatic correction terms, all of which are too small for us to keep.

The second term in Eq. (5), upon substitution into Eq. (2), exactly cancels the generalized Kelsey-
Spruch-Bernabeu-Tarrach (KSBT) term, for each value of n, when we use the relations

1 Qn+2)! = pea(w)
) j; " dw. (6)

x n+1=
E2 277.2

That is, there is no analog to the generalized KSBT term at small R.
In order to obtain the retardation correction to the terms calculated by Drachman, we define a correction
potential, in Hartrees, by

r _ a d2n *dw pE,n(w) corr
Vet (R) = 16k ar J; T wRt e @R @
where
12
J£°'r(wR)=JE(wR)——“—)%+22. (8)
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TABLE 1. Expectation value (in kilohertz) of the re-
tardation correction in » =10 Rydberg states of neutral
helium. The expectation values of the Kelsey-Spruch-
Bernabeau-Tarrach term alone is given for comparison.

L < Vcorr) < VKSBT) a
4 61.76 835.8
5 20.19 179.8
6 7.73 49.2
7 3.28 15.7
8 1.49 5.5
9 0.70 2.0

ayKSBT— (99/128% )a/R°.

For n > 0, all contributions can be neglected to
the accuracy with which we are working, at least in
neutral helium, and so we make the further approx-
imation of retaining only the » =0 term in 3, V"
and obtain

GET: ast fom pE;(r)c(:)) JE(wR )dw,
™

)
yeor=q2/4R*+ O (R~ 3+ ... . (10)

Equations (9) and (10) imply that the leading term
in V" at small distances behaves as R ~*, and is
smaller than the classical term by a factor a? in neu-
tral helium. Most of the correction that we calcu-
late to the energies of Rydberg states in neutral He
arises from this leading term. This correction has a
similar magnitude to those arising from relativistic
corrections to the polarizability and from mass po-
larization.”

The only quantity needed to calculate V°° is the
absorptive part of the electric form factor for the
ion-photon Compton-scattering amplitude. To the
required degree of accuracy, only the dipole approx-

TABLE II. Expectation values (in kilohertz) of the re-
tardation correction in n =9 — 12 Rydberg states of neu-
tral helium.

(peorr)

L n=9 n=10 n=11 m=12
4 83.2 61.8 47.0 36.6
5 26.9 20.2 15.5 12.1
6 10.1 7.7 6.0 4.7
7 4.2 33 2.6 2.0
8 1.8 1.5 1.2 1.0
9 0.7 0.6 0.5
10 0.3 0.2
11 0.1

imation to this amplitude is needed, and recoil con-
tributions to it can be neglected. This approxima-
tion to the amplitude has been shown previously® to
be expressible in terms of the electric dipole oscilla-
tor strength fo=_2m,w | x,0l*

2 2
= X wfiod(0—w)), 11)
J

m,w

pE o w) =

where the prime indicates that the continuum is in-
cluded. For a hydrogenic ion core of charge Z, the
oscillator strengths and excitation energies are
known analytically. It is then straightforward to cal-
culate the potential ¥°°" from Eq. (9), which we do
by numerical summation and integration. To test
the reliability of this procedure, we have computed
the standard hydrogenic sum rules numerically, and
compared with known analytic values. The results
agree to within 0.03%.

The expectation values of this numerical poten-
tial in various Rydberg states of neutral helium
were then computed; the results are given in Tables
I and II. It can be seen that the KSBT term greatly
overestimates the correction. For several of the

TABLE III. Expectation value (in megahertz) of the retardation correction in n =10
Rydberg states of heliumlike ions of various charges.

N 10 20 30 40 50 60 70
4 13.8 57.8 122 199 285 379 479
5 43 16.9 342 54.3 76.4 100 124
6 1.5 5.8 11.3 17.5 24.2 31.1 38.2
7 0.61 2.2 41 6.3 8.5 10.8 13.2
8 0.26 0.88 1.6 24 3.2 40 49
9 0.11 0.36 0.65 0.95 1.3 1.6 1.9
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FIG. 1. The ratio Z of the expectation value of the
retardation correction potential to the expectation value
of the classical potential for states of » =10 and various
L for heliumlike ions of several different charges.

n = 10 states, the retardation correction is similar in
magnitude to reported experimental errors,* sug-
gesting that some improvement in the experiment
should make the observation of these corrections
possible. The calculated corrections should be ad-
ded to the results given by Drachman’ to obtain the
total level shifts in these states.

We have also calculated the expectation values of
Ve in the n =10 Rydberg states of heliumlike
ions of various Z from 10 to 70. The results, in
megahertz, are given in Table III. To understand
these results, we note that from simple scaling ar-
guments, the classical term is proportional to
[(Z —1)/Z)%, whereas the retardation corrections
increase roughly as Z2.

This implies, as indicated in the table, that in
high-Z heliumlike ions, the retardation correction
becomes a larger fraction of the overall splitting. It
can be seen from Fig. 1 that the ratio can be as large
as several percent in some states of the ions of
highest Z, suggesting that measurements on such
ions, if they can be done, would be a good way to
observe retardation corrections. In that connection,
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we must point out that at the highest Z values,
some of the terms neglected in our calculation,
such as magnetic and recoil terms, will become sig-
nificant. Moreover, for large Z, a relativistic treat-
ment of the inner electron becomes essential.
There is no difficulty in principle in doing this if the
experimental situation warrants it.
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Note added.—The measurements of Palfrey and
Lundeen* which show the need for this calculation
are reported in the preceding Letter.
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