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It may look surprising that direct application of linear system theory to the Laplace
transform of the time-dependent Schrodinger equation does not yield the evolution operator
or density matrix in a physically reliable form, but requires a further "reduction procedure, "
earlier introduced in the frame of the so-called determinantal formalsim. It is shown that
this procedure can in fact be viewed as a factorization of determinants intended so as to re-
move unexpected terms from the result.
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The so-called determinantal formalism has
proved a fairly attractive method for solving typical
time-dependent problems in quantum mechanics. '
This formalism is mainly based on the resolution of
the Laplace transform of the Schrodinger equation,
conducted with use of linear system theory. The
primary solution, as given by Cramer's formulas in
the Laplace space, however, does not yield the
result in a form quite satisfactory as to the time
behavior of quantum mean values, trace conserva-
tion, etc. As a result, a somewhat empirical
"reduction procedure" has been worked out, which
finally leads to a much improved form of the
response, as extensively discussed in Refs. 1 and 2.
This Letter aims to show that this procedure, which
looks intriguing at first sight, can be given a sound
foundation, from a physical as well as a mathemati-
cal point of view.

Let us briefly recall the essential argument of the
theory. For the purpose of demonstration it is suf-
ficient to consider the simplest physical situation.
The system, whose unperturbed Hamiltonian is

Ho, with eigenstates a, b, c, . . . , of eigenvalues
tco2, bc'&, . . . , spanning the Hilbert space 8'0, , is

acted upon by a constant perturbation A, from
t =0. Diagonal matrix elements of A are ignored.
The Laplace transform of the Schrodinger equation
of the evolution operator U(t),

dU(t)/dt = (ih ) '(Hp+A) U(t),

with U(0) = 1, reads

[v+it '(Hp+A)]F() ) =1,
with

F(v) = f (((t)v "'dt

This equation can be compactly rewritten as

(I+d 'K)F =d

F'= 1/d, D (D;) (4)

The goal is now to elucidate the fundamental
reason why, once the determinant divisons in Eqs.
(3) and (4) are carried out, we obtain new series
which work much better. Coming back to the initial
equation (2), we first make a partition in the overall
spectrum of Ho. Let a, b, c, . . . denote the whole
set of N states which can be reached in elapsing
time by means of A-induced transitions. If any set
a', b', c', . . . is completely uncoupled from the
preceding one (i.e., any matrix element of A

between the a, b, c, . . . and the a', b', c', . . . is
zero), then it is clear that matrix elements involv-
ing b', c', . . . in the matrix I+ d E will be
blocked out, leading to factorized contributions in
both the upper and the lower determinants of Eq.
(2). The physically expected elimination of out-of-
reach states is thus properly achieved in the Cramer
determinantal solution.

Once simplified, D reduces to an N xN deter-
minant which, nevertheless, still involves products
of E matrix elements, none of which is connected
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I is the identity operator, d = vI +ih Ho, and
E =it 'A. If we assume now that the system is in-
itially in the pure state a the Cramer solution of Eq.
(1), considered as a linear system, directly yields
the b component of the column vector F as

Fb(v) =Db/d D

(d, =v+i0), ). D denotes the determinant of the
matrix I + d 'E and D~ the a -b minor.

The reduction procedure which permits us to
derive an improved form of the result (2) then con-
sists of writing

F =D (D;) '/d, D(D;)
The initial-state occupation probability, for in-

stance, will be derived from F, which is given by
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with the initial a state. The presence of such prod-
ucts, which cannot be associated with any realistic
sequence of transitions, is rather troublesome and
suggests that some further factorization of D may
occur, entailing elimination of these spurious terms.
We notice that the latter are exactly all those which
are contained in the D, minor. This new elimina-
tion, however, is not so obvious as that of the un-
coupled states considered above.

To proceed further, we will make use of the ex-
ponential form of determinants. For any matrix 8,
we have

det8 = exp(Tr ln8).

It is straightforward to verify this equation, for in-
stance on the eigenstate basis of lnB. For

B =I+d 'K, by further expanding the logarithm,
we obtain

OO s(.)
D =exp —$ ( —1)"

n=l fl

where S " is the trace of the nth power of d 'K,
usually called the n-times iterated kernel, in the
theory of integral equations. Explicitly

S " =K"K' Kk/dkdi d„

where summation on repeated indices over all al-
lowed states is implicit. Next, we separate out
terms containing the a state in the S ", say S,":

S(n) = S:(n)+S(n)

I S.(n) no longer contains any a. This splitting gives

OO

D =exp —X ( —1)"
n= 1

f(,

OO S (a)
exp —X ( —1)"

n= 1 7l
(6)

In the expansion of the second exponential, all
terms containing a more than once as a row and a
column index cancel one another since such terms
are exactly those which appear in the overall expan-
sion of D. For this reason the expansion of the
second exponential in Eq. (6) can be limited to first
order, provided that repetition of the subscript-
superscript pair aa is forbidden in the iterative ker-
nels of the remaining sum. D will therefore be fi-
nally factorized as

D =D; 1 —X ( —1)nS,~"l,
n=1

with the slightly modified definition

( ) KkK( K~

u k m

The aa couple is now fixed in the sequence of K's
matrix elements and the n in the denominator [Eq.
(6)] consequently removed.

The bracket on the right in Eq. (7) is an alterna-
tive expression of the quotient D (D;) ' first given
in Ref. 1 as

D(Dnn) ' = 1+d '(a iK(I+ Q, d 'K) 'ia),
where g, denotes the projector on the space
orthogonal to the a state. Substituting for D from
Eq. (7) into Eq. (2) taken for b =a gives the fol-
lowing exact expression for F'.

1

Fn, d 1 X ( 1)nS(n) (&)
n=l

A similar factorization can be carried out for the
minor D~ so as to remove transitions which do not
include the initial a state. it is straightforward to
see that D, can be split into two determinants such
that in the first one Kbn/d, =1 and Ki'=0 if & & b,
whereas the second one is identically D;. If, in ad-
dition, the former is expanded about the a column,
we obtain

S &(n)

Db=e p —X ( —1)"(—S," +
n= 1 n

OO Sr(n)
—exp —X ( —1)"

n=1 n

with

=D; exp X ( —1)"Sb," —1,
n=1

Sb" =K K" K, /dbdi d

(k, l, . . . , m A a ). Notice the change of sign in front of Sb~,
"~ due to the lowering of the order by 1 after tak-

ing Kbn/d, =1. The expansion of Sbt,"~ now shows well every possibility of allowed transitions from a to b.
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/d, D;

Again the exponential expansion in Eq. (9) reduces to the first term (repetition of aa entails cancellation):

D Da X ( 1)nS (n) (10)
n=1

The factorizations given by Eqs. (7) and (10) finally yield the following expression of F:
OO OO

Fb= $ ( —I)"Sbt,") d, 1 —X ( —1)"S,"
n=1 n=1

which is an alternative form of the expression for F given in Ref. 1.
It is worthwhile to outline the reason why expressions (8) and (11) are the best from among other ones

which are apparently equivalent. Let us rewrite

S(n) '

F'=D;/d, D =D; d, D;exp —X ( —1)" (12a)
n=1 n

S (n)
= D;exp X ( —1)" (12b)

n=1 n
t ~ (

OO S (n)

=d, ' exp X(—1)"
n=1 n

Performing the expansion in (12c) leads to the usu-
al pertrubation series which is not as good as (8)
derived from (12a). The reason is that the ex-
ponential in Eqs. (12) must be viewed as a series
(stopped in practice at a selected order). When we
perform the expansions and their subsequent prod-
ucts in the square brackets of Eq. (12a), the deter-
minant D and thereby the initial expression of F'
are recovered at any order. if instead the same is
done in the curly brackets of Eq. (12b), we obtain
an only approximate expression valid at large v, i.e.,
small t.

This can be best appreciated by considering a
simple case. Assume that transitions from a to any
of the N —1 states b, c, . . . , l, . . . are allowed
alone. Then

S (1) 0. S (2) K('K,'

a (

S &'&=Xb/d, =(t 'Wb/dbt-
( ~ dad(

—2igl i2F'= d, + X
(&a l

F= —it 'A dbd+X
d(

If instead we make use of the perturbation expan-
sion (12c), the result will be

F'=d, ' 1+ X(—I)v
da d(

S, " =0 if n ) 2, and S&,
" =0 if n ) 1. Since in

addition D44= 1, with use of (11), we obtain the ex-
act results

(12c)

and a similar expression for F, valid at small A and
large v only (t 0).

%e now turn to extend the above results to the
density-matrix problem. Let p(t) be the density
matrix satisfying the well-known evolution equation

dp/dt = (It) [Ha+2, p(t) ]. (13)

whose c2b2 —c1b1 matrix elements are given by

and the diagonal operator d = vI+ih 'Ho, whose
cb matrix element is

dd = v + (co~p

(cu,b
——co, —cob). Equation (13) can be rewritten in

the 8'H&, space as

(I+d 'E)R =d 'p(0), (14)
with

R(v)= f p((&e "'dv.

R (v) denotes the vector of the gH, H, space

equivalent with the operator R (v) of g~,, i.e. ,

Rb (v) = (cb IR (v) ) = Rb (v)

In Ref. 2, the Laplace transform of this equation is
given a form similar to (1) in the tensorial product
5'H 0 =8'0 8 g 0 of the Hilbert space by its

own dual. Let us introduce the appropriate commu-
tator kernel operating in that space,

It. = «r '(w 5 -w), —
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R;(v ) = D.".p.'(0)/4„D,

Rb(v) =D,'bp (0)/d„D,

(IS)

(16)

Assuming again the system in a pure state a, i.e.,
the state aa in 5' 0 ~, we can now write the Cramer0"0

solution of Eq. (14) as follows:

from state to state in $'H& are now induced by the
P

kernel K. The foregoing arguments leading to a
factorization of D, so as to remove any set of transi-
tions which do not involve the initial aa state, still
hold. The result can be written as

with p'(0) =1.D stands for the determinant of
I+ d K, D,'b for the aa-cb minor, etc. Transitions

and
r

Rb X=(—1)"S,(b,
") d„1—X ( —1)"S,i,")

n=1
t

n=l
t

(cb A aa ), with the extended definitions

~
( ) ~aha ~cib2 ~c ia

aa ctaKc2b& Kab„ i
/ aadctbi dc„& n —1,

d„1—I ( —1)"S„"
n= 1

(17)

(18)

When applied to the simple case considered before, we obtain the following results for the initial- and any
final-state occupation probability:

R:= I/ftv +~ 'I A."I'(4-„.'+ 4.„')-];-
R =t A A (d,b'+db ')a/v[v+tf IA"I (dka'+d ')]

(19)

(20)

As shown in Refs. 1 and 2, the series appearing
in Eq. (11) or (18) can in turn be regarded as solu-
tions of linear systems, written in the form of itera-
tive expansions. Thus the series

( 1)nS (n)

n= 1

is the iterative expansion of the b component of the
vector X obeying the equation

(I+d KQ ) I&) =4 'K la).
Hence

&, = (Dk /dbD')Ka/4b,

where D' now stands for determinants and minor
pertaining to the matrix I + d K0, . If we consid-
er then X, as the solution of a problem in which the
initial state is k, the above factorization can be per-
formed again. If the same is done for the series
arising in the denominator of (11), the result will
be finally expressed in a new and more detailed
form. It is readily realized that the process can be
continued.

This may be of importance in applications when-
ever the first stage is not sufficient, e.g. , for solving
particular divergences, as often occurs in the case of
density matrix. The long-term limit (t ~) of

expressions (19) and (20), for instance, is not well
defined, whereas it is unambiguous in the twice-
reduced expressions. 2

In conclusion, the reduction procedure leading to
the determinantal form of the response in the
evolution-operator or the density-matrix problem
can be understood as resulting from necessary fac-
torizations in the primary Cramer's solution, by
which all physically unexpected terms are eliminat-
ed. Let us recall that the main interest of the deter-
minantal formalism is to yield tractable expressions,
including energy shift and damping effects, in
which unitarity or trace conservation can be careful-
ly monitored at any order of the kernel.
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