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Building Blocks of Percolation Clusters: Volatile Fractals
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We solve for the internal structure of d-dimensional percolation clusters, We find that if
we randomly choose two points, then the backbone connecting these two points can be
described as a randomly constructed "necklace" whose building blocks are s-site volatile
fractals (they are not stable under a length scale change). We find the blob-size distribution
function and calculate the relevant parameters numerically, thereby obtaining the first accu-
rate estimates for the fractal dimension of the backbone in d = 2, 3.

PACS numbers: 05.40.+j, 05.70.Jk

What is the internal structure or "texture" of a
percolation cluster? This important question has
eluded definitive answers despite much recent in-

terest in the use of percolation to describe a vast
number of physical phenomena ranging from aggre-

gation of proteins to galaxy structure. Some answer

is urgently needed, as recent models for the elastici-

ty of gels'z (and the conductivity of random mix-
tures3) depend crucially on cluster structure since
they both address the question of the percolation
backbone: the set of bonds that carry stress (or
current) when one singles out two points of a large
cluster.

Three pictures of cluster structure have been pro-

posed. In model 1, the cluster just above the per-
colation threshold p, is imagined to resemble a large
fisherman's net: It is composed of singly connected
links and nodes where the links join one another. 4

The correlation length is a rough measure of the
characteristic size of fish that will be caught. Model
2 is the opposite extreme of the nodes and links

picture: It replaces the cluster by a Sierpinski
gasket and so has no singly connected links but
does have multiply connected "blobs" of all length
scales. ~ Model 3, the links-nodes-blobs model, is a
hybrid model in which multiply connected blobs are
strung along the links of model 1. ~

From recent applications of percolation to sys-
tems in nature, it is becoming increasingly clear that
model 3 has many advantages. However, despite
this fact, nothing is known about the blobs: We
know that they "exist, " but we cannot make any
quantitative or even qualitative statements about
their characteristics. Here we attempt to correct
this deplorable situation. Our initial purpose was to
address the problem of obtaining the complete sta-
tistical distribution of the blobs. In so doing, we
discovered that the blobs are a case of volatile frac-
tals: At different length scales the blobs themselves
change identity. Moreover, we find that the entire
backbone is identical to what one would find if a
drunk assembled a necklace of pearls, where the
pearls are of all different sizes chosen according to
the blob-size distribution function [Eq. (1) below].

We begin by considering the incipient infinite
cluster —operationally, the largest cluster in a
large box of side I when p =p, . Choose two points
P and Q separated by a distance comparable to the
box size L. If P and Q belong to the same cluster,
then the backbone is the set of sites through which
current would flow if the sites are regarded as me-
tallic checkers that just touch their neighbors. Sites
which if removed would result in a cessation of
current are termed red 7; red sites are also called
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blobs of size one. All remaining backbone sites are
members of blobs of size larger than one, and the
backbone may be viewed as a topologically linear
"necklace" of strings of blobs of all possible sizes
and shapes [Fig. 1(a)l. Note that the blobs are
volatile fractals: When L is increased smaller blobs
can become part of larger blobs [Fig. 1(b)].

To describe these volatile fractals, we introduce
the blob-size distribution function n, (L) which
gives the number of blobs of size s in a box of edge
L We propose the scaling Ansatz

dBB
n, (L) —s 'f(s/L f ). (la)

Here

(lb)

(a}

(b)

2L

FIG. 1. (a) Actual simulation of a backbone in site per-
colation on a square lattice; the decomposition into blobs
of all sizes from 1 to ~ is apparent. (b) Schematic illus-
tration of how small blobs become part of larger blobs
when the box size L is increased.
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r-1 =d/d f
where df is the fractal dimension of the backbone.
Now we know that n, (L) 0 when L ~ be-
cause the small blobs become big blobs when the
system is viewed under a larger length scale L.
Hence we expect that the scaling function f(x) ap-

(2b)

proaches zero when L ~ for fixed s: f(x) —x~

withy ) 0.
To study the blobs at a given box size L, we use a

scaling function f(x) = x f(x) in (1), and obtain

n, (L) —L " s 'f(s/L f ). (2a)
Here

r —1 = d,/dP,
where d, is the exponent describing how the num-
ber of blobs increases with L. The exponent y = (d
—d, )/df, a ratio of dimensions, is universal with

respect to the "kinetics"; i.e., it does not change
even for a nonanalytic change of the "time" vari-
able (p —p, ). These kinetic aspects are intriguing
because of the formal similarity of (2) with cluster-
size distribution functions in aggregation phenome-
na, where this observation should also be useful.

Note from (2) that the total density of blobs,

g, n„usually a background term, should decrease
dr d

as L " . Because of self-similarity, the number of
red sites (blobs of size unity) is proportional to the
total number of blobs; hence d, is also the fractal
dimension of the red sites. Since d, =yT, the ther-
mal scaling field, it follows that the scaling field
due to p —p, comes in at p, in the finite-size scaling
of blobs, but not of clusters [cf. Eqs. (1) and (2)].

Next we test the scaling relations (1) and (2) nu-

merically, and thereby extract from the calculations
extremely accurate values of the relevant fractal
dimensions. Since it has not been possible in the
past to measure the size of the blobs of the back-
bone, we first describe our method in some detail.
Step 1: Determine the cluster backbone using the
"burning" method'; this requires choosing two
points P and Q of the largest cluster in a box of
edge L, and we choose these two points to be those
closest to diagonally opposite corners of the box.
Step 2: Identify the set of all "shortest" paths from
P to 0; the elastic backbone is specially indexed
with increasing numbers for measuring the chemi-
cal distance from P. Step 3: Starting from P, go one
by one through the sites of the elastic backbone.
From each site, we burn until no more sites can be
burned, using the rule that a site once burned can
never be burned again (like trees in a forest); a
burning site burns all neighbors except for the case
when the site and its neighbor are indexed and the
index of the neighbor is larger than that of the
burning site. Thus for each site of the elastic back-
bone, a certain "mass" is burned. These masses
are summed until we reach a site of the elastic
backbone that is not able to burn, but has itself not
been burned. This site finishes a blob. Then the
mass of the blob is registered and a new mass count
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FIG. 2. Blob-size distribution function for d =2, 3 for

L =600 (d=2) and L =60 (d=3).
O. I

starts for the next blob.
%e thereby calculated the complete statistical dis-

tribution n, (L) for a sequence of seventeen L
values up to L = 600 for d = 2, and for twelve L
values up to L = 60 for d = 3. The linearity over
five decades of Fig. 2 confirms the validity of the
scaling Ansatz, from the slopes, we find v-=1.45
+0.05 (d=2) and 1.67+0.05 (d=3). That r & 2

is at first sight surprising, because usually v ( 2
cannot hold for size distribution functions as a
consequence of mass conservation. However, the
scaling relation (2) explains why 7 & 2, and to test
(2) we show (Fig. 3) the moments g, s"n, in a log-
log plot against system size L. From the k = 0 plot
we find slopes —1.24+0.02 (d =2) and —1.89
+ 0.02 (d = 3) which agree with the predictions d,
—d = ——', (d = 2) and —1.89 (d = 3)." This
agreement serves to provide striking confirmation
of the relation (2). Hence we can substitute the
values of 7 and of d, =yr in (2b) to obtain esti-
mates for daa: 1.67+0.17 (d=2) and 1.68+0.14
(d = 3), which are consistent with independent esti-
mates. '

The error bars can be reduced by an order of
magnitude by taking advantage of the scaling rela-
tion (2). The first and second moments have ex-
ponents (2 —r)df and (3—7)df ~, respectively,
which we find to be —0.37+0.01 and 1.19+0.03
( d = 2 ) and —1.21 + 0.03 and 0.47 + 0.06 (d = 3 ) .
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FIG. 3. The moments g, s"n, of the blob-size distribu-
tion function n, for k=0 (squares), k= 1 (circles), and
k = 2 (crosses).

From these numbers, we find ~ = 2.237 + 0.015
(d = 2), an accuracy of better than 1%, and r =2.72
+0.05 (d =3). Using these extremely accurate es-

timates of ~, we can use the relation df
=d/(r —1) to obtain dfaa=1. 62+0.02 (d=2) and
1.74 + 0.04 (d = 3), which are by far the most accu-
rate estimates of the backbone fractal dimension
published.

The above remarks concern the blob-size distribu-

tion. Can we also predict the blob arrangement?
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picture that the backbone is a "pearl" necklace as-
sembled from a distribution of pearl sizes, chosen
according to the distribution law (1), and assembled
in completely random order.

In summary, we have proposed a scaling law for
the blob-size distribution function of the percola-
tion backbone. We have confirmed this distribution
for a sequence of box sizes up to L = 600 (d = 2)
and L = 60 (d= 3) and found that the blobs are
volatile fractals: Their identity changes with box
size, as the smaller blobs become "eaten up" by
larger blobs when L increases. We have used this
distribution to calculate the probability of finding a
string of red sites of length l, and have tested this
prediction numerically. While a linear polymer is a
pearl necklace with identical pearls, a percolation
backbone is a necklace whose pearls have a distribu-
tion of sizes which are chosen from the distribution
law (1) and which are otherwise selected completely
at random.

We wish to thank A. Coniglio, D. C. Hong, and
D. Stauffer for stimulating discussions, and the
U. S. Office of Naval Research and National Sci-
ence Foundation for financial support.
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FIG. 4. Semilog plot showing the frequency ml that
one finds a string of red sites of length I, for d=2, 3.

Topologically speaking, the backbone is a necklace
of blobs of all sizes. Consider the frequency of oc-
currence of a sequence or "string" of I successive
red sites. If the red sites are chosen at random from
the distribution law (1), then the probability of a
string of l sites is given by m —vr' —exp( —l logm),
where m = nt/X, n, is the probability that a blob
selected at random has size one. Hence the slope of
Fig. 4 should be given by loge. From our cluster-
size data we predict that m=0. 69+0.05 (d=2)
and 0.77 +0.01 (d = 3), while from Fig. 4
m = 0.68 + 0.01 (d = 2) and 0.76 + 0.01 (d = 3).
This striking agreement confirms the quantitative
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