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We obtain the rule governing many-body wave functions for particles obeying fractional
statistics in two (space) dimensions. It generalizes and continuously interpolates the usual
symmetrization and antisymmetrization. Quantum mechanics of more than two particles is
discussed and some new features are found.
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In two (space) dimensions, there are allowed to
be, particles of fractional angular momentum or
spin. ' If there is a generalized spin-statistics con-
nection, such particles are expected to have unusual
(fractional) statistics which continuously interpo-
lates between the normal bosons and fermions.
(An example for such interpolation is known in one
dimension. s) The intriguing problem of how it
works is interesting both from the viewpoint of
theoretical principles and from the prospect of
physical applications. A possible relevance of frac-
tional statistics to the quantized Hall effect has been
recently suggested.

Two simple models have been proposed for parti-
cles obeying fractional statistics by Wilczek' Yang
and Yang, and Wilczek and Zee. Two-particle
quantum mechanics was analyzed in detail. A low-
density expansion of the partition function interpo-
lating the standard statistics was obtained. As
pointed out in these papers, Feynman's path-
integral formulation is a good starting point. How-
ever, the formalism in terms of wave functions may

be practically more convenient. An immediate
problem is the general rule governing the many-
body wave functions, namely how to generalize the
usual rule to obtain a continuous interpolation
between symmetrization and antisymmetrization.
In this note I answer this question by deriving the
desired rule in the two models mentioned above.
As an application, I discuss the quantum mechanics
of three particles, not yet touched in the literature.
Some new features are found which are not present
in the two-particle case.

Anyons revisited. —Following Wilczek, I denote
composites formed from charged particles and mag-
netic flux tubes as anyons, since their spin

4 = q C'/2m = e/2sr

can take any real values. Here q is the charge and 4
the flux. That5 interchange of two anyons leads to a
phase e'~ is an indication of the fractional statistics.
We here consider quantum mechanics for more
than two anyons.

The Hamiltonian for a charged particle orbiting
around a flux tube can be written as

1Hp=
2m'

—i —qA(r~ —rf) +8 ~ ~ 1

2mf

2

—i +qA( rq —rf)
9 rf

(2)

Here we consider the limit in which the size of the flux tube can be neglected. r~ and rf are two-
dimensional vectors. Let us assume that the flux tube has a finite effective mass mf in two dimensions. The
form (2) has the advantage that the effect of the interaction is confined to the wave function in the relative
coordinate. In a regular gauge the vector potential is

q A( r ~
—r f ) = —q A( r f—r ) = (l9/27r ) [ n X ( r e

—r f ) ]/~ r —r f ~z

fla= X
2ma

—2qXA( r; —ri) (4)

(with n being the unit vector normal to the two-dimensional plane), and the wave function is single-valued
everywhere.

Now we proceed to consider n identical anyons and neglect the electrostatic forces between them (i.e. , con-
sider the limit q 0 with 8 = qc fixed). The charged particle in each anyon feels the vector potential of the
flux tube in the other. Using the Hamiltonian (I) and applying a procedure similar to that in Goldhaber7 for
the charge-monopole composites, one finds that the anyon-anyon potential is equivalent to that of a charge
interacting with twice the flux in one flux tube; namely
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Let us adopt Eq. (3) for A( r; —r, ) in the regular gauge in which the wave function y is single-valued as in
the one anyon case. To eliminate the long-range vector potential between anyons, we make the gauge
transformation

Q'(r t, . . . , r„)= +exp i —$,, f(r, , . . . , r„),
i&j

(5)

where P,J is the azimuthal angle of the relative vector r, —r, . Now the new wave function P satisfies the
free Schrodinger equation with no vector potential.

At first sight the multivaluedness of the new wave function 1~- seems to be very discomforting. One can
manage to avoid it by imposing appropriate boundary conditions for P on certain cuts in the two-dimensional

plane or formulating quantum mechanics on sections on fiber bundles. However, these two methods are
very hard to put into practice for more than two anyons. Actually, nothing is wrong with the multivalued-

ness of the wave function (5). The modulus squared, ~p'~z, is single-valued, and the multivalued phase fac-
tors are just right to keep track of the Aharonov-Bohm effect. In my opinion once one understands the
need for extending the notion of a wave function (i.e. , not requiring it to be necessarily 27r periodic in @,J),
there is no difficulty in accepting and directly using the multivalued wave function (5) as everybody does
with the double-valued spinors in three dimensions. '

By use of the complex coordinates z;=x;+iy; and z =x, —iy; instead of r;=(x;,y;), the wave function

(5) can be put into a more elegant form":

P'(z;, z;") = g(z; —z )~ f(z;,z,"),
i&j

(6)

with f (z;,z;") = (r J ) e "P(z;,z,") single-valued. f is totally symmetric (antisymmetric) in the pairs (z;,z;"), if
all the fields describing the flux tube and charged particle are bosonic (if the charged particle is fermionic).
The equation (6) is the desired rule for many-body wave functions obeying 0 statistics.

Solitons in point approximation. The sol—itons in the (2+1)-dimensinal O(3) nonlinear sigma model, with

a topological action, also provide a model for particles with fractional spin and statistics. When widely

separated solitons are approximately treated as point particles, the topological term (with the parameter 8)
leads to an additional term

s'= Jtdt I. , L = (el~)(didt) X„,O,, (7)

2

to the ordinary action So= j dt —,m X. r, . While this term does not affect the equation of motion, it deter-

mines the statistics of the particles via path integral.
When one goes from path integral to wave functions, the term (7) also leads to the rule (6) for many-body

wave functions associated with usual Hamiltonian containing no peculiar interactions. In fact, the change of

@,J can be always written as

y,g(t) I,
' =27rtt J+@J QJ, (8)

with 0~ Q,", —$,', ( 2m. Thus, the propagator in the n-particle configuration space is a sum of "partial am-

plitudes, " each corresponding to a distinct class of paths having the same winding numbers [nj]:
~ I Ir,.

IC ( r;",t"; r,', t') = exp[i X(P,' —P,', ) ] Xexp(i 20 Xn„) [S'r;(t)]„exp(iSO).
i&j n," i&j

As usual, a single-valued wave function P( r, , t) can be introduced such that

y( r,",t") = J)d r,'k( r,",t"; r,', t')y( r,', t').

We can eliminate the sum in Eq. (9) by introducing a new wave function

j ( r;, t) = exp i gy, j y—( r, , t ).. 8

i&j
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Then, corresponding to Eq. (10), now we have

Q( r,",r")

d r,'E r;",t"; r,', t' r,', t',
E( r,",r"; r, r')

(12)

(13)

Note that the wave function P( r;, t) is single-
valued on the universal covering space (or
Reimann surface) of the n-particle configuration
space. The integration over r,' in Eq. (12) is taken
on this covering space. By use of the complex coor-
dinates, it is easy to recover Eq. (6) from Eq. (11).

Another way to derive the same result is the fol-
lowing. The Hamiltonian corresponding to Lo+L'
1s

(14)

Here p; is the canonical momentum conjugate to
r, . It is easy to see that H is the same as given by
Eq. (4) together with Eq. (3). We can repeat the
same procedure in the last section to arrive at Eq.
(6). However, the argument given from Eq. (8) to
Eq. (14) has the advantage that it elucidates the re-
lationship between our wave functions and the path
integral formulation.

Properties of the wave function (io.—Equation (5)
or the rule (6) is invariant under tl 0+2m", i.e. ,
fractional statistics is 2m periodic in 6, in agreement
with the well-known periodicity of the Aharonov-
Bohm effect in the flux or that of the 8 parameter
in the topological action.

When 8 = 0 and 7r, the rule (6) coincides with the
standard symmetric or antisymmetric rule. For in-
termediate 8 it gives a continuous interpolation
between the two extreme cases. However, when
0&0, m, the many-body wave functions are not of
the form of products of single-particle wave func-
tions. So generally we expect that the physical
quantities of a system of many particles are not sim-
ply related to those for one particle.

When n = 2, from Eq. (6) it is easy to recover the
condition'

under permutation or interchange of the positions
of particles. Complication occurs even when we ex-
change only two particles in the presence of a third
particle. We have to specify along what loop parti-
cle 1 moves from r ~ to r2 and particle 2 from r2
to r &. The resulting phase change will depend on
whether the "spectator" 3 is enclosed inside this
loop or not. This situation is a reflection of the fact
that the configuration space of identical particles is
multiply connected. It is the origin of the difficul-
ties pointed out in Refs. 5 and 6 in dealing with
more than two particles. The acceptance and direct
use of the multivalued wave functions (6) make the
many-particle problem accessible to approach, since
the complications mentioned above have been sirn-
ply built into the factors g«, (z; —zj)ei .

Physically, the long-range interactions due to 8
statistics are coded in the factors g; &, (z; —

z&) i .
Moreover, these factors imply the existence of an-
gular momentum barriers between any pair of parti-
cles when 8 4 0. Thus the many-body wave func-
tions are expected to vanish when any two of the
particles coincide (if 8 & 0), although the particles
are not fermions for 8 & m.

Three particles, harmonic ~ell.—As an application
let us use the many-body wave functions (6) to at-
tack the problem of three identical particles in a

For n ~ 3, Eq. (6) exhibits complicated behavior harmonic potential. The Schrodinger equation (for
n particles with m = 1) is

fl Q2
HQ=EP, H= ——X,+ —coz Xz;z;",

] QzI'QZI

where p satisfies the rule (6) with f totally symmetric.
The n = 2 case has been analyzed in Refs. 5 and 12.

tions as follows:

(16)

(We have omitted the prime on P).
In our approach we recover the complete set of solu-

IP = W w '+2~ L/ L~ (2QJZZ')L„'+ ( —,
' razz")exp[ —,

' cd(z/zt' +z2z2 )],
E = (2X+ IL I

+ 2~ + Ii+ 251+ 2)a),

where W, n ~ 0 are principal quantum numbers for the center-of-mass and relative oscillators respectively; L,
i+2k are angular momenta in the center-of-mass and relative coordinates. (i must be even. ) Lz™(x)are
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the Laguerre polynomials. '3 We have used the following notation for brevity: Z = —,
' (z]+z2), z = z] —z2 and

Z if L &0, z if i+26 &0,
Z' if L & 0, z' if l +26 & 0.

Since 8 appears only in the form of ) I + 2b, ), the 2m periodicity of 8 is made clear. It is also easy to verify the
continuous interpolation between the spectrum (including degeneracies) of bosons and that of fermions
when g varies from 0 to 7t-. '

For n = 3, we have obtained the following solutions for 0 ~ 8 & m.

[ (z] z2) (z] z3) (zz z3) ] exp[ ——,
' r0r']P, (20)

P = (z]+z2+z3)~(z] —z2)'(2z] —z2 —z3) Lzt ] ( —,r0R )L~t'+' + '] ( —,'0]p )+symmetrization, (20')

E = (2N]+ 2N2+ L + I + m + 65 + 3)cp,

where all N ~, N2, L, m, l are nonnegative integers,
and I, m such that after symmetrization I' does not
become identically zero. Moreover, R =)z]+zz
+z3), r = X, )z;)

p =
~ 2z] zz z3 ) + cyclic permutation.

We note that the parity transformation z; ~ z and
8 —8 is a good symmetry of the equation (16)
and the rule (6). So applying it on the solutions
(20) will lead to more solutions (with I, m such that

]C] has no singularities at z =z,"). We know that
this set of solutions does not exhaust those of the
problem; e.g. , the three-fermion ground state is

missing when 8= m.

Even so, we are able to see some important
features not present in the solutions of two parti-
cles. First, for sufficiently small 0, the ground-state
energy is Ep=(3+38/vr)a]. For n particles, it is

Ep= [n+n (n —1)8/2n ]rd. Thus, the n depen-

dence of Eo has a quadratic part which looks like

two-body interaction energy. Second, when 0=m
the above energy level moves to 6', which exceeds
the energy of the three-fermion ground state

Eo = 5'. So when 8 varies continuously from 0 to

m, there must be level crossing and, therefore, the

emergence of new ground states at certain values of
8. This effect may lead to interesting phenomena
in realistic systems obeying 0 statistics when 0 can

vary under certain circumstances.
To conclude, I stress that though the rule (6) is

derived in two concrete mdoels, it is generally true
for any fractional statistics in two dimensions, what-

ever its origins. This will be confirmed in a model-
independent formulation in a forthcoming paper. '
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