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First-Order Theory of Self-Avoiding Walks Based on Loop Exclusion
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Self-avoiding walks may be constructed through a progressive exclusion of walks with
loops. A study of the process leads to critical exponents v = (4+ D)/4D and y = 8/(4+ D)
for dimension 4 ~ D ~ ~. The equations agree with the e expansion to first order, fit the
(known) values for D = 3, 2, and also those (suggested) for D ( 2. The probability of an ex-
clusion due to a loop of length j appears to be asymptotically equal to (y —1)j ', for
4 )D )~ ( 'strong universality" ).

PACS numbers: 64.60.Fr, 05.60.+w, 61.40.Km

Self-avoiding walks (SAW's) of length N )) I
are described with the help of critical exponents v

and p,
R 2 QN2v

and
8' =3' N~ (2)

where Rz and W~ are the mean square end-to-end
distance and the number of SAW's, respectively; A,
A', and p, are lattice dependent, but v and y depend
on the dimension D alone. For D ~ D, = 4 we have
the ideal values v= —,

' and y=1; at D =1 SAW's
constitute rigid rods, v = 1 and y = 1. The theory of
critical phenomena gives very accurate (or exact) v

and y for D=4 —e, 3, and 2. ' However, the
dependence on a continuous variable 1 (D ( 4 is
also of great interest, e.g. , in connection with at-
tempts to relate random fractals, like percolating
clusters and branched polymers, to SAW's at an
equivalent (noninteger) dimension. For that
purpose one may utilize an equation v = 3/(D + 2),
derived by Flory with the help of a mean-field ap-
proximation. This equation disagrees with the (ex-
act) e expansion already to the first order. Still, it
gives a quite accurate value for D = 3 and the exact
values for D =2 and 1, but the physical reason for
its remarkably good performan. ce is puzzling. 7

Furthermore, its validity in the region 1 & D & 2 is
uncertain in view of recent Monte Carlo experi-
ments. s Finally, no similar equation has been
derived for y.

SAW's may be derived from random walks with
the help of a progressive exclusion of walks with
loops. A construction of SAW's through "dimeri-
zation" offers one possible way to carry out this
progressive exclusion. (Alternative constructions
linked to exclusion are the conventional stepwise
growth, N N + 1, requiring exclusion of loops
formed by the newly added step, or the progressive
increase of the excluded loop length in restricted

walks of constant N. ' ) This Letter studies in de-
tail the loop exclusion in the course of a dimeriza-
tion. On this basis it derives approximate analytical
equations, correct to 0 (e), for v(D) and y(D).

Pairs of "monomer" SAW's of length N)) 1
are linked together to produce "dimer" walks of
length 2X Dimers in which one half intersects the
other, forming a loop, are excluded. (We need not
worry about internal intersections since each mono-
mer is a SAW. ) Upon completion of the exclusion,
the remaining dimers constitute an ensemble of
SAW's of length 2N. Clearly W2~ ——(WN)'f, «,
where f,„, is the fraction of the ("successful" ) di-
mers in which one half does not intersect the other.
In view of Eq. (2), II'2N ——(3'p, N» ') f,„,
=A'p, 2~(2N)& ', giving

f N- (g-1)

The exclusion of dimers in which an m th and an
nth segment, belonging to the first and to the
second monomer, respectively, form a loop of
length j=m+n [see Fig, 1(a)] is carried out in a
succession of steps. n is varied from 1 to N and, for
each n, m is varied from 1 to N. P „z is the loop's
probability at the (mn, )th step. More precisely,

„z is the fraction of dimers in which the m th
and the v th segments form the loop j = m + n in an
ensemble of dimers in which, on the second mono-
mer, (i) segments 1 to n —1 are already completely
self-avoiding with respect to the first monomer, (ii)
the nth segment is self-avoiding for loops of length
up to j—1 only, and (iii) segments n + 1 to N are
not yet self-avoiding with respect to the first mono-
mer. We have [using x = exp(lnx) and expanding
lnx ]

n=I m=l
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a) c) where h„~ is the ratio of R 's, after and before the
exclusion at an (m, n ) th step. Prior to this ex-
clusion the dimers consist of two fractions, P, and
1 —Pj, respectively, in which the nth and mth seg-
ments do, or do not, form the loop j = m + n. The
P& fraction has its effective length shortened from
2N to 2N —j [see Fig. 1(a)]; the 1 —p, fraction is
unaffected. 5„ is the ratio of (the average) R
after and prior to the exclusion of the Pi fraction.
Thus, to a first approximation,

5„~= (2N) "/[@&(2N —j) "+ (1—
@&)(2N) "].

FIG. 1. Geometrical effects of the exclusion of dimers
with loops: (a) Segments m and n, on the first and
second monomer, respectively, form a loop j= m + n;
the effective dimer's length is shortened from 2N to
(N —m) + (N —rt ) = 2N j. (b) Segm—ents m' ( m and
n'( n form an "enclosed" loop j'= m'+n', shortening
the effective length between m and n from j to j—j'. (c)
Segments m' & m and n'( n form a "crossed" loop
j'=m'+n', shortening the effective length between m

and n from j to m' —n' =j' —2n' (for m = n = j /2).

If we assume

(5)

then Eq. (4) at once reproduces Eq. (3) to within
leading order of N. True, other expressions, not
depending on j alone, might achieve as much. Yet
Q~ „~ should be independent of N, as well as of m

and n separately, with the exception of the cross-
over regions j N and (m or n) j. Ruling out
that these crossover regions provide the dominant
contribution to the double integral justifies Eq. (5).
Equation (5) predicts a strong universality, a power
law independent of D (D, . The coefficient equals

y —1=0(a). Consequently, correlations between
multiple loops are presumed to contribute terms of
order higher than first in e. The present estimates
are limited to the first order alone.

We now consider the increase of R&2 upon dimer-
ization. Prior to the exclusions, the random linking
of pairs of monomers of (average) Rg produces di-
mers of R z& = 2R& = 2AN ", with the asterisk
denoting the stage preceding exclusions. Upon
completion of the sequence of exclusions, we are
left with true SAW's, having R2~=A (2N) ". The
corresponding swelling is

A=R2~/RB =2"
4 is decomposed into stepwise variation

Introducing Eq. (5) and expanding (2N —j) " in a
series leads to

5„~= 1+v(y —1)/Nj.

Higher-order terms of the expansion are propor-
tional to (2v —1)(y —1)= 0 (e ) and are therefore
neglected. The same applies to the neglected pro-
gressive variation of R„(X=2N or 2N —j) by a
factor =2 " ', as n varies from 1 to N [cf. Eq.
(6)]. Furthermore, R of the length 2N —j is af-
fected by the presence of extra "dangling" lengths
m and n. However, in view of the remark following
Eq. (5), this should contribute terms that are of or-
der higher than first in e. Transforming II II 8„
into exp[ ff(8„—1)—.. . ] [similarly to E~q.

(4)] gives 5=22"~'r tl. Together with Eq. (6) this
leads to

(2v - 1)/2v ——y —l.

The above estimate of the effect of exclusions on
R zz may be reexpressed more formally as

R 2~ D'(N, rr) = 2AN——err.

The notation requires explanation: The "effective"
length N«r Nx [A(N ")]——'i " where b (N2") de-
notes the swelling 5=2 ' " ' estimated in Eqs.
(7) and (8). The present notation stresses that 6
has been computed with respect to N raised to the
power 2v, which is the quantity associated with
R2&', in the expression for N, rr the 1/2v root of
6(N2") is taken to express it as a length. Finally,
D' denotes an operator corresponding to a random
linking of effective lengths, saying "Take N«f raise
it to power 2v, multiply by A [cf. Eq. (1)], and
double the result, to obtain Rz& of the dimer
SAW's. " [One easily verifies that the recipe repro-
duces Eq. (8).]

Equation (9) helps us to estimate a second effect
of exclusions, notably upon the dependence of PJ.
on j. We consider again the pair of segments m and
n on the two monomers. Prior to the exclusions,
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the monomers are mutually uncorrelated. Hence
the probability that m and n intersect one another,
forming the loop j= m+n, scales as the segments'
density in a hypersphere in D space, viz. ,—R, D-j "

(H. ere we take for the sake of
simplicity m = n = j/2. ) This initial dependence
applies to dimers in which other segment pairs, n'

and m', may form loops j' = m'+ n'. If 1 ~ n' & n

(while 1(m'~ N), such dimers are excluded in
the sequence preceding the (m, n)th step. This
causes the drop from the initial p,

' to QJ
—j [cf.

Eq. (5)], by the time the process attains the nth
step. In analogy with Eq. (9), this drop is estimated
by assuming

e, -4'(J.rr) —(j.rr) " . (10)

Here, however, j,rr
——j x [6(j ) ] ' . Or, the ef-

fect of exclusions is estimated with respect to the
reciprocal square length, j, since this quantity is
associated with QJ. Except for that difference, the
estimation of h(j ) parallels entirely that of
6(N2") before. At an (m', n')th step the dimers
consist of two fractions, P., and 1 —P.„respective-
ly, with or without the loop j' = m'+ n'. We first
consider the case m' & m [illustrated in Fig. 1(b)],
where an "enclosed" loop j' shortens the effective
length between m and n from j to j —j'. Similarly
to 5„ the ratio of the reciprocal square lengths,
after and prior to the exclusion of the P., fraction,

J
is estimated as 5(j ), , =j 2/[p. , (j
—j') 2+ (1—P., )j ]. For a "crossed" loop,
m') m (see Fig. 1(c)], the length is shortened
from j to j' —2n', for j (j'+2n' (for longer j'
there is no effect). 5(j ), , is therefore es-

timated correspondingly, with (j' —2n') replac-
ing (j —j') 2. The total variation, b(j ), is ob-
tained by taking products of 5(j 2), , over m'

and n' Passing . to integrals [again, as in Eq. (4)]
gives

g (&
—2) &

-2(y —t)

j -yvD J
—2

J

where the decrease is shared equally by the en-
closed and crossed loops. [It is important to note
that b, (j ) diverges with j, whereas 5(N2") is
merely equal to a factor; this difference seems to be
related to the additional divergence of small inter-
segmental distances. "] From Eq. (11) it follows
that j,rr= j x [h(j 2)] 'i2 —j". Introducing this
into Eq. (10) and comparing with Eq. (5) leads to

Therefore yvD = 2. Combining this result with Eq.
(8) gives

and

v = (4+D)/4D,

7 =8/(4+D).

(13a)

(13b)
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Expansion at D = 4 —e gives v = —,(1+e/8+ e /32)
and 7 = 1+e/8+ e /64 which agrees with the
correct expansion' to first order, but gives a much
too small second-order term. At D=3, present
results are v=0.583 and y=1.142 to be compared
with the accurate estimate v = 0.588 and y = 1.162.
At D = 2 the result reproduces the presumably ex-
act value v=

4 and gives y= —", , believed until re-
cently to be exact, but slightly smaller than the very
recent y = 1.344. Throughout 2 ~ D ~ 3, Eq.
(13a) and the Flory equation differ very slightly.
For D (2, however, Eq. (13a) predicts a much
steeper increase, comparable to that of Ref. 8.
Thus Ref. 8, Eq. (13a), and the Flory equation
give, respectively, v(1.5) =0.94, 0.92, and 0.86;
v( —,) =1, 1, and 0.90. Below D = —,, Eq. (13a)
gives a nonphysical v & 1. This is interpreted as a
transition to rigid rods, v = 1, already at D =

3 at
that point y reaches —', .

The strong universality of progressively excluded
loops, $, j—for D (D, (above D, one has the
ideal $e- j D~2), plays a major role here. A simi-
lar power law has been proposed' ' for somewhat
differently defined "tadpole" loops; see, however„
Ref. 14. (The present loops are relevant to a con-
struction of SAW's through dimerization, N 2N;
the tadpole loops are relevant to the stepwise con-
struction N N + 1.) Finally, one should note that
the basic assumptions of the present and the Flory
theory are entirely different. In the Flory theory,
the (mean-field) binary repulsions are balanced by
the (ideal) entropy of stretching, both terms greatly
overestimated. ' Here v (of swelling) and 7 (of ex-
clusion) become interrelated; first, because ex-
clusion causes swelling, and second, because swel-
ling decreases exclusion, keeping it at the marginal
level p, —j 2. A more negative power would
make the exclusion negligibly small; a less negative
power would lead to a tearing exponential increase
of jI) with N [as can be verified by following Eqs.
(7) and (8)].
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