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An exact path-integral solution of the Dirac equation with a Coulomb potential is found.
The energy-dependent Green’s function of the second-order Dirac-Coulomb equation, ex-
pressed as a polar-coordinate path integral, is reduced to the exactly solvable path integral for
an isotropic harmonic oscillator by a coordinate transformation combined with a local time
rescaling. The Green’s function of the linear Dirac equation is evaluated with the help of the
Biedenharn transformation. The energy spectrum for the bound states is also obtained.
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That Feynman’s path-integral approach to quan-
tum mechanics' is severely limited in application
has often been exemplified by the lack of path-
integral solutions for the hydrogen atom and the
spin problem. The Dirac-Coulomb problem, dou-
bly burdened with the Coulomb potential and spin,
appears to be another hopeless example. Very re-
cently, however, exact path-integral treatments of
the nonrelativistic Coulomb problem have become
available.Z* A breakthrough has been made in the
long-standing problem® with the help of a contact
transformation combined with a rescaling of the lo-
cal time interval. The hydrogen atom, insofar as
the nonrelativistic case is concerned, is now kept
under control. Furthermore, the kind of transfor-
mations used for the hydrogen atom has also been
proven applicable to other nonrelativistic prob-
lems.® The fundamental issue of spin, on the other
hand, still remains unsettled. The recent Grass-
mann-number formulation of a path integral for
spin seems promising, but is far from being useful
in handling interactions with external fields.’
Feynman’s formulation of an iterated Dirac equa-
tion,? involving spin matrices explicitly at the classi-
cal level, has been considered not only aesthetically
unsatisfactory but also computationally complex.
Nonetheless, the old idea still retains its unexpired
practical value.’

In this paper, we report that the Dirac equation

with a Coulomb potential can indeed be solved ex-
actly by path integration. First, we reduce on the
Biedenharn basis!® the Green’s function of the
iterated Dirac-Coulomb equation into a radial path
integral which has an effective action similar to that
of the nonrelativistic hydrogen atom. Then, we
convert the Coulomb radial path integral into the
radial path integral for an isotropic harmonic oscilla-
tor by a coordinate transformation combined with a
local time rescaling. In the nonrelativistic case,??3
the Kustaanheimo-Stiefel transformation has been
used to reduce the Coulomb integral in R? into an
oscillator integral in R* For evaluating our radial
integral, such a bijective mapping is not appropriate.
Instead, we adopt an alternative one-to-one map-
ping of the radial variable and the local timelike
parameter. Obtaining the Green’s function of the
iterated Dirac equation, we find an explicit expres-
sion for the Green’s function of the first-order
Dirac equation with a Coulomb potential, and the
exact bound-state energy spectrum for the Dirac-
Coulomb system.

The Dirac equation with a Coulomb potential
may be written as

(m—M)|p)=0, (1)

where M= —B& - P+B(E+ Ze*/r) in units F=c
=1. The form of the Dirac equation (1) is not
unique. A similarity transformation, M= SMS~!
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and |y,) =S|¥), converts (1) into (m— M) )
=0 without altering its physical content. Such a
transformation sometimes simplifies the solution.
What we shall specifically be concerned with is an
equation which is related to the original Dirac equa-
tion (1) by the Biedenharn transformation.'® The
corresponding Green’s function, G=(m — M
+i0)~!, can be put in the form G=(m+ M,)g,
where g=(m?—M2+i0)~!. In the coordinate
representation, this is

(F'|GITY =[m+M(FHUT"IglF), Q)
where
STIM,(T)S=iBa -V +B(E+ Ze¥r).

Here, we write the Green’s function of the iterated
Dirac equation in an integral form,

—rt

gl T
=(i/2m)J:°<T’”|exp[—iHu]|T”>du, 3)

by introducing an operator H = (m?—M2)/(2m)
and a parameter u. The integrand of (3) may be
viewed from the structural similarity as the propa-
gator of a system which, having an effective Hamil-
tonian H, evolves with the change of the timelike
parameter u. As Feynman asserted,! the propagator
can be put into a path integral. Thus, we attempt to
evaluate (3) by path integration and to find an ex-
pression for the Green’s function of the Dirac
equation via (2).

As usual, %!l we employ the radial momentum
operator p,= (T -P—1i)/r, the Dirac operator K
=pB(&-L+1), and the Martin-Glauber operator
L= — (BK + iZe*a,) with a,=a - T/r to express
the effective Hamiltonian in (3). Namely,

+ L(L+1)  a kK

p,2
—-1 _ L
§THS 2m 2mr? r 2m’

where a=Ze2E/m and k*=E*—m?. If L(L+1)
is diagonalized by S commuting with p, and r so that
SL(L+1)S 1 x)=A(A+1)|)\), then the Green’s
function (3) can be given in polar coordinates as
follows:

(771l T)
=3.(070"IN) (rlaalr) (N6'g"), @
with the radial Green’s function
(rlexlr’)
= (i/2m)f(r"lexp( —iHyu)|r') du, (5)
where
2 2
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The propagator in u evolution of (5), having the ef-
fective radial Hamiltonian (6), is identical in form,
except for the contribution from the last constant
term of (6), with the radial propagator of the non-
relativistic hydrogen atom.*

Before getting into the path-integral calculation of
the radial Green’s function (5), we have to specify
the value of A in (6). Customarily, the solutions of
the Dirac-Coulomb problem are classified_by the
respective eigenvalues, j(j+1), u, «, and 8 of the
mutually commuting operators J2, J;, K, and B.
As is well known, j=%,3, ...; u=—j —j
—1,...,j—1,j; k=+(+7%); B=+1. The
Martin-Glauber operator - can be simultaneously
diagonalized by the Biedenharn transformation'?
that is, .£,=8.4S 1= —BK[1—(Ze¥K?)]/?,
where S =expl+iBa,tanh~1(Ze?* K)]. Hence, the
eigenvalues of .7, are given by y= + [k2— Z2¢*]/2,
Since A\(A+1)=y(y+1), we have

Ay)=lyl+5(sgny—1). (M

Therefore, we identify the angular functions
(OqSI):) with the simultaneous eigenstates (0|,

w,k,B). More explicitly, we write the angular
states as
. 0
<9¢|J’/‘L:K: - 1> = Xk’
K

X4 .
<9¢|J,I~L:K’1>=[ 0 )’
X¥ being the two-component spinors
Xk(8,¢)
=3, (Gu—vljw) YAV (0,6)X. (9

Apparently, we are dealing with the Dirac equation
(1) in the Biedenharn representation.!®!! Using
(6) in (5) and noticing that sgnk= +sgny for
B= F1, we obtain the Green’s function for the
second-order Dirac equation,

(T"lglT)

=3, e 7Y QL (0707 10°6") B2, (10)

where
Qi""(9u¢ulgi¢l)
=2 XE(07,0")XH (87, 0"). (11)

Now let us turn to the path integration of the ra-
dial Green’s function (5). Following the time-
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slicing procedure, we express the radial propagator in the integrand of (5) as

N N /254
(r”lexp(-—iﬂxu”")=("’”)_1N1im fexp[iES('rj)]H I14; (12)
— > Jj=1 j=1 j=1

m
2mit;

where r;=r(w;), ro=r', ry=r", Tyj=u;—u;_y, and u=37;. In (12), S(7,) is an effective short *‘time”
radial action given by

S(r;)= m(Arj)2/27j——)\()\+ l)'rj/2mrjrj_1+a7j/rj+ szj/2m. (13)

In the absence of the Coulomb term in (13), the path integral (12) can easily be calculated. However, the
Coulomb potential complicates the problem.
To carry out the integration of (12), we change the radial variable r; into a new variable p; and the local in-
terval 7; into a new interval o ; by
py=r% o =1,/47, (14)
where 7;= (r;r;_ 1)1/2=pjpj_1=f>f. With (14), the action (13) becomes
m(Ap;)? N m(Ap))*  2A(A+1)o;

20, 8‘715—’} mF_’jz

S(o)) = +4a0,— +mo’plo;, (15)

where o = 2ik/m. At the same time, the measure of (12) changes as

N m V=1 P! m V=1
- dri=(4p'p" )" V2T] | == I1 4p;. (16)
jI_II 2mio; 111 4 jeil| 2mioy ) o

These alterations do not make (12) integrable. The second term of (15) involves (Ap;)*, which hinders the
path integration from being completed. As can be easily shown, however, the following formula is valid for
ninteger and |A4 | large (Re4 > 0):

fxz"exp[ — Ax2+ Bx*+ O(xﬁ)]dx=fx2"exp[ —Ax*+3BA72+ 0(A47%)]dx, a7

so that the second term of (15) may be replaced by an equivalent term, — 3o i/ (8mp j). As a result, the radi-
al propagator (12) can be put into the form

(r"lexp(— iHyu)|r') =+ (p'p") ~¥2exp(4iac) K, (p",p';0) (18)
with the propagator in o evolution,
N N Vay_y
% ’" ’. — r o ny=—1 1: . o . m
K\(p",p"0)=(p'p") A}Enmfexp[ljng(a,)]j]:[l[ Tmic, jl:[l dpj, (19)
where A
S’(O'j) = m(Apj)2/2a'j— N+ 1)0'j/2m;_)j2— %mwz‘p_} (20)

and \'=2X+ 5. The effective action (20) is now identical in form with the radial action of an isotropic har-
monic oscillator in three dimensions. Thus, the propagator in « evolution of (5), reduced to the radial path
integral for an oscillator, can be calculated, the result of this calculation being!?

Ky (p",p"0)=(p'p") V2= ime)csc(wa)

><exp[%imw(p'z-i-p"z)cot(w()‘)]1)‘/_*_1/2[ — imwp'p”csc(wa)], 1
where /,(2) is the modified Bessel function. Using this in (18) and setting p2=r', p2=r", mo =2ik,
N=2\+ 3, 0=1/(4p'p"), p= — imak, and q = k7(4r'r"m?) =2, we can write the radial Green’s function
(5) as

(r'lexlry=C(rr) "l/zfexp( —2pq)explik (r'+ r")cothq]
X Iny 410 —2ik (r'r"") 2 cschq leschq dg. 22)
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The integration of this type has often appeared in previous calculations.>*® Now we simply use the result to
obtain the radial Green’s function (' > r’’) in a closed form,

FT(p+Ar+1)
2ikr'r"T (2N +2)

where M, ,(z) and W, ,(z) are the Whittaker functions. This coincides with the result obtained earlier by a
different method.!* The full Green’s function for the second-order Dirac equation is given by (10) with
(23).

The Green’s function of the first-order Dirac equation (1) can be derived from (2). Since we have applied

the Biedenharn transformation in order to diagonalize.#, the operator M,(T") in (2), when acting on the
state, takes the form

(r'lealry = M _ 10 (=2ikr" ) W_ gy 1n( = 2ikr'), (23)

M,(T)=iBa,[8/dr+ (1 —yB)/r+ (Ze2E/y)B1+ (kE/v)B. (24)
Furthermore, the Whittaker function M, (,) in (23) satisfies the recurrence relations
D + [r"le( i‘y)] = & isgny[mz—— (KE/‘y)Z]I/z[r_lMx( ?7)]’ (25)

where D 4 =d/dr+ (1 £v)/r 3 Ze’E/y. Applying (24) and (25) to (2), we arrive at the Green’s function
for the Dirac-Coulomb problem,

(T"|G|T")y = zj’x[l“(p+)\+ 1)/2ikr'r"T (2N +2)TW _ , \ 4 172( = 2ikr")
X {[m— (kE/y)IM_ ;s 412(=2ikr'") QL (87$"10'¢") B2
— ik Sgn'yM_p’xH/z( - 2ikr")Q,{, _K(B"¢"|9'¢')a1a2a3}, (26)

where A=A (y) and \=A(—7y).

The bound-state energy spectrum can be found from the poles of the spectral function,
G(E) =f(?‘|G|?)d3r. Indeed, the poles arise from the I' function in (26) when p+A+1=—n
(n=0,1,2, ...). Note that here p = — iZe?E(E?— m?)~ Y2, Apparently these poles yield the standard for-
mula

Ene=ml1+ Z2%4(n+1) 72712, 27
where \ has been given by (7).
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