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Twin Boundaries in Ferroelastic Media without Interface Dislocations
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An elastic Ginzburg-Landau theory which includes strain and strain-gradient contributions
is formulated for inhomogeneous strain fields associated with interface boundaries, hetero-
phase inclusions, and transformation precursors. For proper purely ferroelastic materials of
D4& symmetry, an explicit kink-type solitary-wave solution describing a moving coherent
(110) twin boundary is obtained.
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Among structural, displacive phase transitions
there are two "distinct" classes': (1) At the unit-
cell level there is an intracellular ("shuffle") dis-
placement of atoms, with little homogeneous lattice
strain. (2) There is a significant strain of the unit
cell (i.e., "lattice distortive"); the accompanying
intracell strains are secondary. This difference plays
a fundamental role in the physics and morphology
of the two classes.

In class (1) long-range elastic stresses are less im-

portant; the intracell displacive transition can easily
spread with the speed of propagation of the associ-
ated soft phonon [e.g. , the purely ferroelectric D4„
C4„ transition of Ba2NaNbsOis at 560'C (Ref. 2)].
Other aspects are that it is a second-order transition
with well-defined critical properties, and an ap-
propriate soft-mode polarization vector is observed.

In class (2) the unit-cell distortion which accom-
panies the product phase formation necessarily im-
plies long-range dimensional changes; to form and
grow the new product phase in the parent phase in-
duces large elastic strains. As a result several new
considerations come into play: (1) The total free
energy of the system becomes a function of not
only the "intrinsic" free energies of homogeneous
parent and product, but also of the macroscopic
heterostructure of the system. (2) In fact, in mar-
tensites's and ferroelastic (FE) materials~ s the
elastic component of the total free energy is conse-
quently lowered either by plastic flow (irreversibly)
or by formation of a heterogeneous array of dif-
ferent orientations of the product phases which
usually occur in parallel twin bands. (3) The transi-
tion is first order and mode softening never takes
place completely, although macroscopically soft
elastic behavior frequently accompanies the transi-
tion. (4) Precursor structures7 ("microdomains")

frequently precede the transition.
This class encompasses martensitic transforma-

tions which are characterized by a dominating "de-
viatoric" (i.e., shear) component of the transforma-
tion strain. ' Ferroelastieity is the analog of fer-
romagnetism, where domains have differently
oriented magnetization. It is defined by the ex-
istence of two or more structurally equivalent stable
orientation states, which can be interconverted by
mechanical stress. 5 If the spontaneous strain is the
primary (secondary) order parameter in the Landau
theory of phase transitions, the FE transition is
called "proper" ("improper") and falls into the
second (first) of the above classes. 9 Many marten-
sitic transitions are also proper FE transitions.

These lattice distortive transitions are essentially
reversible, diffusionless, characterized by precise
parent-product habit plane and relative unit-cell
orientations, and often shape-reversible changes;
though microscopically heterogeneous there are
well-defined macrostates associated with this class.
This situation is analogous to commensurate-
incommensurate systems or epitaxy, ' which have
been modeled by nonlinear displacement fields,
leading to kinks, soliton arrays, " and other hetero-
structures.

In this Letter we will address a particular aspect
of heterogeneous structures in martensitic transi-
tions: twinning in a cubic-tetragonal (Oh D4&)-
transformed proper purely FE material. Examples
are In~ „Tl„alloys and the 315 compounds V3Si
and Nb3Sn. We provide a soliton model of twin-
ning, ' which constitutes an alternative to the "in-
terface dislocation" models traditional in metallur-
gy. 3 The parameters of the model can be related to
experimental elastic-constant data and phonon
dispersion curves.
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We consider an elastic continuum, representing a
cubic (Ot, ) prototype phase which may deform fer-
roelastically into any of three tetragonal (D4&) vari-
ants with (nearly) orthogonal c axes. We express
(a) the elastic energy functional (including terms
nonlinear in strain up to fourth order, and strain
gradient terms'3 's up to second order) in terms of
(b) symmetry strains appropriate for cubic sym-
metry':

el ( ill+ l22+ l33)/~3 2 ( ill l22)/'A

3 ( 111+r!22 l33)/ A e4 l23 l32

es, e6 by permutation. Here 7!; = —,
'

(u, . + u. ,
+ uk 1 uk J) are the components of the Lagrangian
strain tensor, and u„=Bu;/Bx, the derivatives of
the displacement vector u (x, t) with respect to the
material coordinates xi in a common stationary
Cartesian frame coinciding with the cubic axes of
the prototype phase. We carried out a general ex-
pansion of the elastic energy with respect to the
symmetry strains and their first gradients, ' but re-
port here only those terms that enter the particular
solution for a moving (110) twin boundary with
only (deviatoric!) (e2,e3) strains present':

U(e;e t)=4(e )+W(e;) (n=2, 3; i=1,2),
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The coefficients in (lb) are linear combinations of
second- through fourth-order elastic constants. '
The strain gradient coefficients in (lc) describe
nonlocal elastic behavior. ' ' For C ~ 0 Eqs.
(1a)—(Ic) define the Ginzburg-Landau energy
functional for an OI, -D4& FE transition, provided
that the only strains present are given by the two-
component order parameter (e2, e3) and are in-
dependent of x3. The presence of the third-order
term implies a first-order transition. Assuming the
usual linear temperature variation of the soft shear
modulus A as for a proper FE material, and con-
stancy for the remaining coefficients, we introduce
the dimensionless temperature 7 = 42C/B2 = ( T
—T,)/( Tp T, ), where —Tp is the transition tem-
perature and T, the stability limit of the cubic phase
(W =0).

The Lagrange density L = ppu u /2 —U(e, e;)
leads to the equation of motion'

(

tiU BU
(2)

8u1t Buick

In general, the solution of (2) is very cumbersome,

but a simple particular solution may be found from
the Ansatz

u, =nx, + f(n x +vt) (i =1,2);
(3)

Q3 = —20;x3,

with n = const, f an unknown function, and n

denoting the normal of the (110) twin boundary.
We obtained a first-order solution [valid for small
transformation ("Bain" ) strain] by neglecting
"geometric nonlinearity" (arising from the last
term in q,i), but retaining "physical nonlinearity"
[as represented by the anharmonic strain energy
(lb)], which leads to e2= f', e3= J6n;
e~= e4= e5= e6=0, thus justifying restriction to
the elastic energy [(la)—(lc)]. For the particular
value 7 = —9 (A = —9B2/4C ( 0) Eq. (2) reduces
to the ordinary differential equation

(ppv' —a2)f" —3 a(f4')'f" + gf""=o (4)

for the function f, with the coefficients given by
a2=3A/2, a4=2C, and with n= ( —', )'i2B/4C. For
g ) 0, Eq. (4) has the exact solution

f(s) =fp+ (2g/a4)' in(cosh[(s —sp)/J2]] (displacement),

e2(s) = + [(ppv —a2)/a4]' tanh[(s —sp)/E2]; e3 = J6n (strain),

(sa)

(5b)

in the dimensionless variable s= (n x +vt)/(,
~he~e g= [g/(ppv —a2)]' is a coherence length
which determines the width of the strain kink (Sb).
The corresponding Lagrangian strains are
= n + (e2/ J2), 7122

= n —( e2/ J2), v) 33
—2n and

describe the moving boundary between two
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(velocity-dependent) orthorhombically deformed
variants of the cubic parent phase. The strain kink
moves with the speed +v in the [110] direction,
but the particles move in the [110]direction (paral-
lel to the twin boundary) with the speed +J2e2v,
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in the first and second derivatives of the displace-
ment.

The unique feature of this model is that a
coherent correspondence is maintained across the
twin boundary, no atoms are "lost," and artifacts
such as "coherency dislocations" to form the boun-
dary are unnecessary. However, only an extensive
atomistic model could account for the Peierls bar-
rier pertaining to twin boundary motion or the bal-
ance between core energy and elastic energy.

There is a long history of modeling of interphase
interfaces, as, for example, the parent-product mar-
tensite interface discussed by Olson and Cohen
they and others' " have introduced strain gra-
dient energies into simplified static one-dimen-
sional models of the interface. Ours is a three-
dimensional dynamic model with a two-component
strain order parameter; it is particularly relevant
when the strain field energy is an important part of
the total boundary energy. The solutions reported
here relate two tetragonal regions, but do not yet
define the three-region alternating-twin to cubic in-
terface which describes the martensite-parent habit
interface. To obtain that solution it will be neces-
sary to solve Eq. (2) for strain fields inhomogene-
ous in' two directions.
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