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A self-consistent description is obtained for the low-frequency evolution of a plasma, the
electromagnetic field that confines it, and the amplitude of a high-frequency antenna-driven
field. The ponderomotive energy of the system is related to the antenna reactive energy.
Equilibrium equations and a variational principle for stability are given in terms of ion and
electron ponderomotive forces, magnetization current, and self-consistent modification of

the high-frequency field.
PACS numbers: 52.35.Py, 52.35.Mw, 52.55.Mg

Recent experiments on the Phaedrus tandem
mirror at Wisconsin! have been performed with two
rf antennas emitting in the ion gyrofrequency
range: The first antenna is used for ion cyclotron
resonance heating, and the second, which emits
somewhat above the ion gyrofrequency, is used for
stabilization. The quadrupole fields are turned off,
so that the mirror field is axisymmetric. It is ob-
served that the level of fluctuation is low, which
seems to indicate good confinement properties, and
that the power deposited by the second antenna is
negligible. When, on the other hand, the voltage of
the second antenna is reduced to zero, the fluctua-
tions in the plasma increase dramatically, reflecting
the flute instability. This experiment suggests that
the stabilization by the field of the second antenna
is a ponderomotive effect, unrelated to dissipation.

The explanation that is customarily given?$ to
explain the stabilizing effect of the high-frequency
field is based on the consideration of ion drifts. It
is argued that when the ion ponderomotive drift
balances the curvature and magnetic-gradient drifts,
then the plasma is stabilized. Furthermore, since
the expression for the ion ponderomotive force ex-
hibits a resonance at the ion gyrofrequency, one
deduces that these forces get very large close to that
frequency.

We show in this Letter that a self-consistent
treatment leads to very different conclusions.
Indeed, the high-frequency-field characteristics
such as polarization and propagation depend on the
plasma configuration, and act in turn on the plasma
through ponderomotive forces and magnetization
current. It will be seen that there is no actual singu-
larity at the ion gyrofrequency, and that the equi-
librium and self-consistent stability analysis must
include all of the effects: electron and ion pondero-
motive forces, magnetization current, and perturba-
tion of the high-frequency field pattern.

A convenient way to take all the reciprocal in-
teractions into account is to consider a global pic-

ture of the system which includes the plasma, the
electromagnetic field, and the antenna. A complete
description is provided by the Lagrangian action of
the system, expressed in terms of the displacement
of the individual plasma particles and in terms of
the electromagnetic vector potential (we adopt the
radiation gauge for convenience). Variation of the
action with respect to the displacements yields, of
course, the Newton-Lorentz equations, while varia-
tion with respect to the vector potential gives the
Maxwell equations including the antenna and plas-
ma current sources.

Since the frequency w of the field emitted by the
antenna is of the order of the ion gyrofrequency
and is much larger than the rate y at which the flute
instability develops, a separation of time scales is
appropriate. We represent the motion T, of the
particles as the sum of a low-frequency motion (the
motion T, of the oscillation center) and of a high-
frequency oscillation with amplitude T modulated
at low frequency:

Tiot(D) = Toc () +Re[T(Dexp(—iwt)].

We use a similar_representation for the field: The
vector potential A is the sum of a low-frequen-
¢y component Ay and of a high-frequency com-
ponent of amplitude A:

At (X, 1) =Ay(R,1) +RelA(X,)exp(—iwt)].
The action is then expressed in terms of these vari-
ables, expanded up to second order in the ampli-
tudes, and averaged over the fast time scale, under
the assumption that no resonance takes place. The
expansion is based on the assumption of small in-
terchange forces, which result from the unfavorable
average curvature, or in the model developed later,
from the gravitational potential ¥. Formally, we
use the ordering A=0(n), y=0(n), ¥=0(»?),
with n the small parameter. The new form of the
action is now the sum of three distinct contribu-
tions: the oscillation-center action, the average
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field action, and the ponderomotive action that collects all the terms second order in the high-frequency am-

plitudes.

The total ponderomotive energy V, that is associated with the ponderomotive action so derived, turns out

to have the simple expression’

_m_c_zfdii

where €(X) is the Hermitian (since we exclude res-
onances) local dielectric tensor at w, and j, is the
antenna current density amplitude. The equation
satisfied by the high-frequency field A is obtained
by setting the variation of the _expression (1) equal
to zero for all variations of A, and is the driven
wave equation
(0¥ ) A—Vx(VxA)=—(4m/c) T ,.

The solution A and the ponderomotive energy V
are to be considered as functionals of the plasma
densities and magnetic fields, which appear in the
dielectric tensor €.

It is easy to show that the value of V, at its sta-
tionary point, is half the last term of Eq. (1). It is
therefore equal to the reactive energy of the anten-
na:

V=LI|IY4, 2)

where L is the inductance of the antenna in the
presence of the plasma, and /is the given amplitude
of the antenna current. Since the value of the in-
ductance is measurable experimentally, the above
interpretation of V allows the experimental deter-
mination of the (generalized) ponderomotive force
F on the plasma, if one relates the variations of the
inductance AL to the (generalized) plasma displace-
ment Aa, and uses the equation F=—(|I]%/
4)AL/Aa. The relation (2) will also be very useful
for optimal antenna design, as we shall see when we
examine the stability conditions.

In the cold-plasma limit, the dielectric tensor as-
sumes its usual expression® and is a local function
of the oscillation-center densities n, (s is species la-
bel) and of the low-frequency magnetic field B.
The variation of the averaged action with respect to
its variables leads to a closed set of two-fluid equa-
tions for oscillation-center densities and momen-
tum densities. The ponderomotive effects appear,
first, as ponderomotive-force densities

—nV(8V/dng)

in the momentum equations, and second, as a

magnetization-current density
— ¢V x (8V/3B)
in Ampere’s law. More explicitly, the ponderomo-
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To be definite, we shall neglect here the com-
ponent of A parallel to B (a consequence of small
electron mass), and use suitable approximations of
the components S and D of the dielectric tensor!%:

——wp,/(w "‘92)
and
D=w3;ﬂ,/w(w2—— Q) - wz/Qew,

where w,, and () are the plasma frequencies and
the signed gyrofrequencies. As a result, we get

Y (%)
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where b is the unit vector in the B field direction, as
well as a similar equation for the magnetization.

Although the derivatives of the dielectric tensor
in the above equations do indeed exhibit poles at
the ion gyrofrequency, the ponderomotive potential
and magnetization current are not singular at that
frequency.'l'12 This is a result of self-consistency
that imposes a special polarization to the high-
frequency field: A is the solution of the wave equa-
tion, and, close to the ion gyrofrequency, is circu-
larly polarized in the electron direction. As will be-
come clear below [Eq. (3)], a singularity does ap-
pear (for 0 < |k, | < o), but not at Q; rather it is
on the Alfvén-ion:cyclotron branch of the disper-
sion relation:

w=kvall+ (kyva/ Q)12

where v, is the Alfvén speed. The properties of
the waves and the existence of the resonance make
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it essential to consider the k; spectrum emitted by
the antenna. Since the resonance is always below
the ion gyrofrequency, its sudden absence above (Q;
is consistent with the sharp transition that is ob-
served experimentally. According to the expression
(3), the change in stability across (2, is not due to a
sudden reversal of all the ponderomotive forces. It
might rather be associated with the local energy
deposition produced by the resonance.

Comparison of the electron and ion ponderomo-
tive potentials shows that the former often dom-
inates the latter, and in any case cannot be neglect-
ed in the analysis. Note that for a quasineutral vari-
ation

dn,=d8n,=9dn,

the variation of Vis the sum of an electron and an
ion contribution, i.e.,

dV=0V/on,+8V/5n)dn.

The equations simplify in the two-dimensional
magnetohydrodynamic (MHD) approximation, with
the magnetic field in the Z direction. The oscil-
lation-center density »(X) and the magnetic field
B(X) are then purely convected by the velocity
field T(X):

9n/dt+V - (nw)=0,
and

0B/9t+V - (BU) =0.

The momentum equation is

nM(9T/9t+U-VU)=—-V(BY/8w+p, ) —nV¥—nV(8V/6n)— BV (5V/8B),

where M is ion mass, p, is perpendicular pressure,!?

and — V'V is an outward gravitational field which mim-

ics unfavorable average magnetic field curvature. Note the ponderomotive and magnetization contributions

in the equation. Finally, A obeys
(0¥ c?) (SA—

which completes the system of equations.

iDAX3) =V x(VxA)=—(41/c)T 4,

When the plasma and the antenna are both axisymmetric, the static equilibrium equation expresses radial

pressure balance:

B2
87

d
dr

- tp|t+n d_"'

Jroilis)-o

For that geometry, one can eliminate the radial component of A, to obtain

[wz+ Nt Q(0—0) 102~ Nt Q(0+Q))]

2
Wiz)= _-1__%|A0|2i

and a similar expression for the magnetization.
Here

Ni =kfcY o

A simple evaluation shows that magnetization and
ponderomotive force have comparable contribu-
tions and must both be included.

From the linearization of the equations around
their equilibrium, one can build a modified delta- W
variational principle that allows an easy practical
determination of the stability. For instance, for an
incompressible displacement field (presumably the
most unstable flute motion)

E=Vix3,
with stream function
t(r,0,6)=C(PNexplim,0)exp(yt),

one obtains’ the modified delta- W variational prin-

Qf[w},-l— Nt (02—

Q] . ®)
ciple:
Here
N=fd3anl %2[2 %—IZII

is a measure of the plasma intertia,

- _ 3 m 2 dB d 8V
i f @' l | “dr dr|oB
is the magnetization energy contribution, and
- _ 3 m_ 212 dn d 8 V
W f ax | 2 i dr dr

is the interchange contribution modified by the
equilibrium ponderomotive force. The last term of
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Eq. 4),

2, A
Wy=[ [ dxdx 2oL (L)

dndn’ dr dr

comes from the distortion of the high-frequency
field due to the flute motion of the plasma.!* The
second-order functional derivatives of V are nonlo-
cal quantitites (i.e., depend on two points rand r'),
and their expressions involve the high-frequency
plasma-wave Green’s function for the equilibrium
configuration.”

The relation of V with the antenna reactive ener-
gy [Eq. (2)] allows the following interpretation: If
the plasma configuration is such that the antenna
impedance is minimum, then the distortion effects
are stabilizing. In fact, for the simple case of axi-
symmetric high-frequency field evanescent in the
plasma, it turns out that distortion effects are desta-
bilizing. A field rotating in the angular direction
might be more favorable because it tends to be na-
turally (i.e., in vacuum) more localized outside of
the plasma region.

Preliminary estimates show that the required rf
energy that is necessary to stabilize the plasma is of
the order of the free energy that is liberated by the
plasma during interchange of the flux tubes. More
precise estimates need to take into account delicate
geometric features of the mirror and of the anten-
na, and will be the object of future research.

In summary, we have derived a complete set of
equations for plasma dynamics with ponderomotive
effects, and we have explicit expressions for the
ponderomotive forces and magnetization current.
Self-consistency is essential and deeply affects the
conclusions. In particular (in the cold-plasma
model) there is no singularity at the ion gyrofre-
quency, and the consideration of waves with finite
ky, is important. The equilibrium and stability
analysis must include ion and electron ponderomo-
tive forces, magnetization current, and distortion of
the high-frequency field. We gave the modified
delta- W variational principle in a simple MHD case,
and analyzed the effect of distortion on stability.
We showed the relation of the ponderomotive ener-
gy to the antenna inductance, and described the
possible applications to experimental measurements
of ponderomotive effects and to optimal antenna
design. Details of the derivations and generaliza-
tion of the results given here will appear in a forth-
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8V dn dn’

82V _ dn dB'
5ndB' dr dr'

8V dB dB’
SB&B dr dr |

coming publication.”
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