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We explore some properties of dense matter in Skyrme’s chiral soliton model and show
that at high densities the energy density varies as n¥3, where n is the baryon density. This is
quite different from the behavior of conventional nuclear models, but is very similar to that
of quark matter. The maximum mass of neutron stars constructed of such matter is signifi-
cantly lower than that for most other versions of dense matter and may account for the ab-
sence of neutron stars in many extended supernova remnants. The phase transition to quark
matter is expected to be softened considerably by such a nuclear-matter model.

PACS numbers: 14.80.Dq, 11.10.Lm, 97.60.+z

In a series of prescient papers Skyrme' 2 showed
how to construct baryonlike objects as topological
excitations of a meson field. In recent years, identi-
fication of the topological density with the baryon
density has been placed on a firmer footing by the
work of Witten.3 The model has been successful in
accounting for properties of single baryons®* and in
describing the gross features of the interactions
among nucleons.>>® To date, most discussion of
that problem has been devoted to the two-body in-
teraction. In this paper we explore the predictions
of the Skyrme model for a many-body problem,
namely dense matter.

The basic Skyrme Lagrangian density is

I:=———f£Tr[LL l—e—zTrlL L,)? (1)

4 w=p 4 w=Ad

where L, = UTB,LU, f= (=93 MeV) is the pion de-
cay constant, and € is a constant determining the
strength of the fourth-order term introduced to sta-
bilize the chiral soliton. The unitary matrix U, the
basic ingredient of the theory, specified by a direc-
tion 7 and a chiral rotation angle 6, is related to the
singlet meson field o and the triplet (pion) field 7
by

U=e'T = f-1[g(X)+iT 7T(X)], )

where 7 are the usual Pauli isospin matrices.

Let us first investigate the energy. As in previ-
ous calculations of nuclear forces we consider static
configurations and neglect quantum fluctuations.

We consider a U of the form U(T/\), where X is
some scale length. The spatial components of the
current L therefore scale as A~ !. At high densities
the dominant term in the Lagrangian density is the
fourth-order one, which scales as A ~4, whereas the
second-order term scales as A ~2 and may therefore
be neglected at high enough densities. Thus for
small A, the energy density scales as A~%. On the
other hand, the average baryon number density »n
scales as A~ 3. Thus we conclude that at high densi-
ties (small \) the energy density £ must vary as
n*3. The result is implicit in the work of Skyrme,2
who obtained a lower bound on the energy propor-
tional to n*/>.

Now let us make quantitative estimates of the en-
ergy of skyrmion matter. At low densities matter
will consist of a number of essentially noninteract-
ing skyrmions. At the center of each skyrmion U
takes on the value —1. The simplest skyrmion has a
simple hedgehoglike structure, with the pion field
in the radial direction, 7 =7 in Eq. (2). Other skyr-
mions may be obtained from this one by subjecting
it to a (space-independent) isospin rotation. As the
density increases, skyrmions begin to overlap, but
there are still points at which U = — 1, which may
be regarded as the positions of the skyrmions. The
energy of a configuration depends on the positions
of the skyrmions and the isospin rotation charac-
teristics of the structure near these points. One can
of course envisage structures in which one has lines
or surfaces on which U = — 1, but to consider them
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here would take us too far afield, and we shall con-
fine our attention to configurations which resemble
approximately spherical skyrmions, modified by
their mutual overlap.

Our problem therefore is to solve for the chiral
field for a given configuration of skyrmions. This is
a horrendous variational problem, so we shall make
some approximations. First we consider only the
case when all skyrmions are identical. Second we
replace the many-skyrmion problem by a single-
skyrmion problem with a boundary condition, in
the spirit of the Wigner-Seitz approximation in
solid-state physics. The skyrmion is assumed to be
at the center of a spherical cell whose volume is
equal to the average volume per skyrmion, and we
impose the condition that the chiral angle vanish
everywhere on the surface of the sphere. To
motivate this approximation, consider an array of
identical hedgehog skyrmions, all in the defensive
position, on a simple cubic lattice, as sketched in
Fig. 1. It is easy to see that, by symmetry, the
chiral angle vanishes on the corners of the unit cell,
at the centers of the edges, and at the face centers,
a total of 26 points. Since the Lagrangian depends
on gradients of the fields, the fact that =0 at so
many points on the surface of the unit cell means
that @ cannot vary from zero greatly over the whole
surface. Consequently it should be a reasonable ap-
proximation to put § =0 at all points on the surface.
(We note that, by the variational principle, impos-
ing this constraint will give an energy greater than
the actual one.) Similar arguments apply to other
lattices and to disordered configurations of skyr-
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FIG. 1. Isospin directions of the pion field in a unit
cell of a cubic lattice of skyrmions, on a plane containing
the centers. Skyrmion centers (U = —1) are indicated
by small circles, and points corresponding to the vacuum
state (U =1) by crosses.
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mions, provided that in them no skyrmions are
much closer together than the typical skyrmion
spacing. The assumption that the environment of a
skyrmion is spherical should be reasonable, since
each skyrmion is surrounded by a rather large
number of neighbors.

The chiral angle is given by the same equations as
for an isolated skyrmion,”>® except that the boun-
dary condition that @ tend to zero at large distances
in the free-skyrmion case is replaced by the condi-
tion 6=0 at a radius r equal to the cell radius r,.
For r — 0, 6 tends to = for a skyrmion with baryon
number unity, just as in the free skyrmion case. At
high densities (small r,) we find that E/kc
=~ 870e2n*3. This is to be compared with the lower
bound E/kc > 12(272)*3e2n*? = 640€2n*?  ob-
tained by Skyrme.? The rather small difference
between our estimate and Skyrme’s lower bound is
remarkable, since our calculation is for the most
repulsive configuration possible, where all skyr-
mions are identical. This shows that the energy can
be reduced by no more than 25% by the isospin
““‘combing’ of hedgehogs. Physically this means
that at high density isospin-dependent correlations
have little effect on the energy.

In Fig. 2(a) we plot the result for the interaction
energy per unit volume of skyrmion matter, that is,
the total energy density minus the baryon density
times the free skyrmion mass energy. In our nu-
merical calculation we took for € the value
0.005 52, as obtained by Jackson and Rho’ by fitting
to the experimental value of g,. This gives an iso-
lated skyrmion mass of 1420 MeV. For comparison
we show results for more conventional descriptions
of matter, those of Bethe and Johnson’ using the
Reid nucleon-nucleon potential and of Friedman
and Pandharipande® using the V4 potential plus a
three-nucleon interaction. The energy of the skyr-
mions is greater than those of the traditional
models at low densities because we have chosen the
most repulsive skyrmion configuration and have
calculated the energy variationally. At high density
the energy of the skyrmions, which is proportional
to n*3, increases less rapidly than that of the more
traditional models.

The n*3 dependence of the energy per unit
volume is radically different from that of any con-
ventional model of nuclear matter in which two-
nucleon interactions dominate.”® In the latter case
the energy density must vary as n2, as in Ref. 7, or
some higher power if spin-orbit forces are included,
as in Ref. 8. Since the arguments on which these
conventional nuclear models are based (nonrela-
tivistic dynamics, local potentials, hard or soft
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FIG. 2. (a) The energy per unit volume as a function
of baryon density, for pure skyrmions, for the calcula-
tions of Bethe and Johnson (Ref. 7) and of Friedman
and Pandharipande (Ref. 8), and for our composite
model (see text). (b) Pressure as a function of baryon

density, for the same cases as (a).

cores) lose their validity at high densities, those n
dependences are in no way compelling. The
Skyrme model is therefore a valuable one for pro-
viding clues as to the nature of the nucleon-nucleon
interaction at high densities. As Skyrme pointed
out,? the n*/3 dependence of the energy density im-
plies an n'/? or 1/r. dependence of the energy per
skyrmion. This may be understood as being due to
a 1/r potential acting between neighboring skyr-
mions. The reduction of the interaction between
other than nearest neighbors comes about because
of the essential nonlinearity of the short-distance
part of the Skyrme Lagrangian (1). This 1/r,
dependence of the interaction energy is not in
disagreement with the result’ that for large N the
spherically symmetric N-skyrmion state has interac-
tion energy proportional to N2. This is because that
N-skyrmion state is an onionlike arrangement of
baryons, each having the form of a spherical shell,
quite unlike the roughly spherical baryons of the
dense matter we are considering. This will be dis-
cussed more fully elsewhere.’

We now investigate consequences for neutral-star
properties. First we must allow for the kinetic ener-
gy of the skyrmions. We shall assume that this is

given by the kinetic energy of an ideal neutron gas.
The result for the total pressure as a function of
baryon density is shown in Fig. 2(b), where for
comparison we also show the results of Refs. 7 and
8. We have mocked up an equation of state which
interpolates between the Friedman and Pandhari-
pande results® near nuclear density (where we be-
lieve they are the most accurate representation of
neutron matter) and the skyrmion results at high
density. Extrapolation of the results of Ref. 8 was
made with an analytic fit to the tabulated quantities
so that the energy per unit volume increased as n?
at high density.!° To obtain a composite expression
with the desired skyrmion high-density behavior
this has been reduced by a factor 1+ (n/ng)¥3; the
value ny=2.185 fm~3 gives the requisite coeffi-
cient of n*>.

The maximum neutron-star mass with this com-
posite equation of state is 1.51M, where M is the
solar mass. The radius is 8.7 km and the central
density is 1.8 fm~3. In the vicinity of the max-
imum, the mass is rather insensitive to the central
density, and the neutron-star mass of 1.40M oc-
curs at a radius of 9.8 km and a central density of
1.1 fm~3. This maximum mass is substantially
lower than those obtained from most equations of
state. (The corresponding mass for Ref. 8 is
1.96M,.) This reduction depends to some extent
on the manner in which the equations of state of
Ref. 8 and of skyrmions have been combined in the
composite model, but it is clear that the trend must
be in this direction. If in a stellar collapse the con-
densed remnant has a mass greater than the max-
imum neutron-star mass it will presumably form a
black hole. Since many stellar collapse calculations
lead to condensed remnants of mass about 1.4Mf,, it
is quite likely that many of the remnants could be
black holes. If this were the case, it would provide
an explanation for neutron stars being found in
only a few supernova remnants.!! The maximum
mass we find is not inconsistent with observational
estimates of neutron-star masses.!> However, we
stress the fact that there are still many problems in
this area.

It is interesting to compare the energy of skyr-
mion matter to that of quark matter. We assume
three flavors of massless quarks. At high densities
the limiting behavior of E, is given to first order in
the QCD coupling constant « by

E,=B+37x3 1_+__2a n*¥c
3
~ 4381+ 22 |3, (3)
3
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where B is the bag constant. The coupling constant
a is probably considerably less than the MIT value!?
2.2, and therefore Eq. (4) very likely lies between
4.83 and 7.08 times n%3. This is to be compared
with the limiting behavior of the skyrmions, which
including their Fermi energy is Eg=(2.32+870
x e2)n* ¢, which is 7.157%% ¢ for €2=0.005 52.
For €2=0.004 21, the value used by Adkins, Nappi,
and Witten,* one finds Eg=5.982%%c. We there-
fore come to the remarkable conclusion that at high
densities the energy of the skyrmion matter is equal
to that of asymptotically free quarks to within the
uncertainties in the calculations. We strongly
suspect that one of the reasons for the phenomeno-
logical success of the Skyrme model in accounting
for the properties of baryons is that the fourth-
order term mocks up the properties of a bag of
quarks. Further support for this view comes from
recent calculations in the chiral bag model,'* made
up of quarks contained by the outer part (8 < 7/2)
of a skyrmion. For a bag of radius 0.44 fm, nucleon
properties can be explained quite satisfactorily
without invoking the fourth-order term in the skyr-
mion part of the model.

In view of the fact that skyrmion matter at high
densities seems to be a good approximation to a
quark gas (and is probably modeling the quark gas),
it does not make much sense to discuss phase tran-
sitions between skyrmions and quarks. A physical
way to discuss the transition to quark matter would
be to extend our calculations to the chiral bag
model. We suspect that the transition between bags
of quarks with chiral field in between and a phase
where quarks fill all of space would be accompanied
by a smaller density change than the corresponding
transition involving a conventional nuclear model.
We therefore expect that in relativistic heavy-ion
collisions it will be difficult to detect the transition
to quark matter through its influence on the equa-
tion of state.
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