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Density-Functional Theory for Time-Dependent Systems
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A density-functional formalism comparable to the Hohenberg-Kohn-Sham theory of the
ground state is developed for arbitrary time-dependent systems. It is proven that the single-
particle potential v( r t) leading to a given v-representabie density n ( r t) is uniquely deter-
mined so that the corresponding map v n is invertible. On the basis of this theorem, three
schemes are derived to calculate the density: a set of hydrodynamical equations, a stationary
action principle, and an effective single-particle Schrodinger equation.

PACS numbers: 31.10.+z, 03.65.-w

Density-functional methods have become an im-
portant tool in the treatment of many-body prob-
lems in atomic, molecular, solid state, and nuclear
physics. ' The successful application to stationary
systems has recently sparked new interest in treat-
ing time-dependent (td) problems in terms of den-
sity functionals: Atomic2 and nuclear3 scattering
processes, photoabsorption in atoms, 4 and the
dynamical response of inhomogeneous metallic sys-
tems's have been successfully discussed.

However, as yet, a fundamental existence the-
orem comparable to the theorem of Hohenberg and
Kohn7 (HK) could not be demonstrated for arbi-
trary td systems. To illustrate the difficulties in-
volved we shall first give an outline of how such a

theorem should look in a general td situation. The
starting point is the td Schrodinger equation (SE)

l Be(t)/Bt =H(t)e(t), e(tp) = ep

(atomic units are used throughout this paper). The
Hamiltonian H(t) = T+ V(t)+ 8' is assumed to
consist of the kinetic energy

T = X,JI d'r j, ( r ) ( ——,'7') j,( r ),

a td, local, and spin-independent single-particle po-
tential

V(t) = X, d'r v( r t)j, ( r )j,( r ),

and some spin-independent particle-particle interac-
tion

))'= —,gX, fd'r fd'r iI, ( r ) 0, , ( r ')'N ( r, r ')0, , ( r ')j ( r ).

By solving the td SE (1) with various potentials
v( r t) and a fixed initial state 4p we obtain a map
F:v( r t) C)(t). Next we calculate the densities
n ( r t) = (4 (t) ~

n ( r ) ~C (t))with n ( r ) = g, j, ( r )
x Q, ( r ) for all the td wave functions resulting
from I'. This defines another map 6:
v( r t) n( r t). In order to establish a td version
of the HK theorem one has to show that G is inver-
tible. Of course, we cannot expect an exact 1-1
correspondence since for two potentials V(t) and
V(t) differing by an additive merely td scalar func-
tion C(t) the corresponding wave functions will

differ by a merely td phase C)(t) = e ' ' 4(t) with
u(t) = C(t), so that the resulting densities will be
identical, n( r t) = n( r t) However, if .it is possi-
ble to establish the invertibility of 6 up to such an
additive td function then the wave function is fixed
by the density up to a td phase via 4 ( t)
= FG 'n ( r t) and any expectation value
(4(t) ~0~4(t)) can be regarded as a functional of
the density (the ambiguity in the phase cancels out

provided 0 contains no time derivatives).
The proof of the traditional HK theorem is based

on the Rayleigh-Ritz principle. The difficulty for td
systems arises from the fact that no minimum prin-
ciple is available; the action integral

A =„I, dt(@(t)i B/Bt H(t)'iC (t))—
provides only a stationary point (but, in general, no
minimum) at the solution of the td SE (1). So far,
a HK-type theorem has been proven only for two
special casess: (a) If the potentials v(r t) are re-
stricted to functions having a periodic dependence
on time the proof can be based either on the
Rayleigh-Ritz principle for steady states9 or on the
minimum property of the "adiabatic" td ground-
state energy. 'p (b) For potentials consisting of a
fixed static part and a small td perturbation
v( r t) =vp( r )+v,„,( r t) the inverse of G can be
constructed within linear-response theory. "'
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The aim of this paper is to establish a general
theory for v-representable densities which applies
to arbitrary td situations: In the first part (theorem
1) we shall prove the invertibility of G. Except for
the requirement of being expandable into a Taylor
series with respect to the time coordinate, no re-
strictions will be imposed on the set of admissible
potentials. The second part of the paper (consisting
of three further theorems) will provide a theoretical
basis for practical schemes to calculate the td densi-
ty.

Theorem 1.—For every single-particle potential
v( r t) which can be expanded into a Taylor series
with respect to the time coordinate around t = to, a
map G:v( r t) n ( r t) is defined by solving the
time-dependent Schrodinger equation with a fixed
initial state 4(tp) =Op and calculating the corre-
sponding densities n ( r t) This. map can be invert-
ed up to an additive merely time-dependent func-
tion in the potential.

Proof. —Let v( r t) and v'( r t) be two potentials

k

„[v( r t) —v'( r t) ] ~, , ~ const.
~tk

t~ to (3)

The only thing to prove is that the densities n ( r t)
and n'( r t) corresponding to v( r t) and v'( r t) are
different if (3) is fulfilled with some k~0, In a
first step, we show that the corresponding current
densities j( r t) and j'( r t) are different. It should
be noted that the particle and current densities cor-
responding to v( r t) and v'( r t) are of course
identical at the initial time to since we consider only
wave functions which evolve from a fixed initial
state Co.

The time evolution of the current density is most
easily discussed by means of the equation of motion

which differ by more than a td function, i.e.,
v( r t) —v'( r t) W c(t). This does of course not
exclude that the potentials are identical at t= to.
However, since the potentials can be expanded into
a Taylor series around to, there must exist some
minimal nonnegative integer k such that

i (@(t)—~O(t) )4 (t)}= (C (t) ~i O(t)+—[O(t),H(t)]C (t)}.
dt 6t

Using j ( r t) = (4(t) ~ j ( r ) ~4(t) }with

j (r ) =(2i) 'X,{[&p,'(r )lp, (r) —p,'(r )[&p,(r )1),

one obtains

ir) j (r t)/Ot=(a(t)~[j (r), H( )t]~ C(t)}.

Since &b(t) and &0'(t) evolve from the same initial state C&p, Eq. (5) leads to

(4)

i [j ( r t)—j'( r t) ] ~, , = (—4p~ [ j ( r ),H(tp) —H'( tp) ] ~4p} = in ( r tp)'7 [v ( r tp) v'( r tp) ]—.

If the potentials differ at t = t&[i.e., if (3) holds for k = 0] then the right-hand side of this equation will be
different from zero and thus j ( r t) and j '( r t) will become different infinitesimally later than tp If the.
minimum integer k for which (3) holds is greater than zero then Eq. (4) has to be applied k times. Deriva-
tives of the potentials with respect to space coordinates [as far as required to calculate the commutators in
(4)] are assumed to exist. After some straightforward algebra one obtains

+ 'k

i [j (—r t) —j '( r t)1, , =in( r tp)vr i [v(—r t) —v'( r t)]~, , WO.
t

Again this means that j ( r t) and j '( r t) will become different infinitesimally later than tp which completes
the proof for the current vectors.

Next we consider the corresponding densities. By use of the continuity equation we have

(8/Bt) [n( r t) —n'( r t)] = —div[ j ( r t) —j '( r t) ].
Taking the (k+1)st derivative of this equation and using the above result for the current densities we ob-
tain

k+2

2
[n( r t) —n'( r t)]~. ..= —divn( r tp) '7

tk+'
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If the initial density n ( r tp) falls off rapidly enough
to ensure that the surface integral vanishes we can
conclude n( r to) ['7u(r)]2=—0. This is in contra-
diction to u ( r ) ~ const provided n ( r to)
reasonably well behaved (we merely have to ex-
clude that the initial density vanishes in precisely
those subregions of space where u = const, if such
regions exist at all). Thus, the right-hand side of
(6) cannot vanish which proves that the densities
n( r t) and n'( r t) become different infinitesimally
later than to.

Theorem 2.—There exists a three-component
density functional P [n] ( r t) which depends
parametrically on ( r t) such that the exact particle
and current densities can be determined from a set
of "hydrodynamical" equations

in the sense that the same dependence on n ( r t)
holds for all external potentials v( r t) A. [n] has a
stationary point at the exact density of the system,
i.e. , the exact density can be computed from the
Euler equation

W/Sn( r t) =0. (11)

Proof. —Although the wave function (I) (t) is

fixed by the density only within a td phase factor,
the matrix element

(C (t) l]a/et T —IV —v-(t) le (t) }
is uniquely determined since the function C (t) con-
tained in the potential V (t) is precisely cancelled by
the time derivative of the phase u(t) =C(t) [see
discussion following Eq. (I)]. Therefore, the action
(2) is a unique functional of the density and can be
written as (10) if B [n] is chosen as

9 n ( r t)/ "rlt = —div j ( r t), (7)

rl j ( r t)/Bt = P[n]( r t), (8)

with initial conditions n ( r tp) = (coin ( r ) leap}
and j ( «o) = (@ol j ( r ) lCp}.

Proof. Since the e—xact particle and current den-
sities always satisfy the continuity equation (7) it is
sufficient to prove Eq. (8). From theorem 1 we
know that the potential is determined by the density
up to an additive td function C(t) This in .turn
fixes the wave function within a td phase factor:
C)(t) =e ' 'V[n](t) where 0"[n](t) is defined as
the wave function obtained for the choice C(t) = 0.
By insertion into (S) the desired Eq. (8) is immedi-
ately obtained if the functional P is chosen as

P[ n]( r t)

B[n] =„dt(+[n] (t) I
i 6/Bt —T—IVI Ir [n](t)}.

(12)

The universality of 8 follows trivially from the
construction. Since the action (2) is stationary for
the exact solution of the td SE (1), the correspond-
ing density functional (10) must be stationary for
the exact td density of the system.

In order to derive a practical scheme comparable
to the Kohn-Sham formalism' we first define
another density functional by

S[n]= J], dt(+[n](t)lirl/et —Tl+[n](t)}

(13)
= —i(+[n](t)

l [ j ( r ),H(t)]l'Ir[n](t)}. (9)

Theorem 3.—The action integral (2) can be
represented as a functional of the density A [n]. If
the potential v( r t) is chosen such that no additive
time-dependent function can be split, the total ac-
tion can be written as

which is, of course, universal in the same sense as
B[n]. It should be pointed out that the particle-
particle interaction has been kept fixed so far. If we

compare two different interactions W and W' then
the corresponding functionals Sz[n) and S,[n]
will in general be different. Now let Sp[n] be the
particular functional (13) for the case W=—0, i.e. ,

for noninteracting particles. Then, in analogy to the
stationary case, the "exchange-correlation" part of
the action can be defined as

pt]
A„,[n]=J~ dt(%[n](t)lIVl+[n](t)} ——,Ji dtJI d rJI d r'n(r t)w(r, r')n(r't)+Sp[n] —S~[n].

(14)

t)
3 [n]=B] ] —fnCtfd r n( r t)n(rt), ()0)

where B[n] is a universa/ functional of the density

It remains to be shown that the right-hand side of (6) cannot vanish if (3) holds. The proof is by reductto ad
absurdum: Assume that div[n ( r tp)'7u ( r ) ] = 0 with u ( r ) N const; then

0=
&

d r u ( r ) div[n ( r tp)'7u ( r ) ) = —JI d3r n ( r tp) [V u ( r ) ]2+ —,II)n ( r to) [~u2( r ) ]

Theorem 4.—The exact time-dependent density of the system can be computed from

n( r t) = XPJ'( r t)@,( r t), (IS)
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where the single-particle orbitals QJ ( r t) fulfill the time-dependent Schrodinger equation

(ir)/"t)t+ , V—)p,(r t) =v,«[r t;n(r t)]@,(r t)

with an effective one-particle potential given by

v«r[ r t n ( r t ) ] = v ( r t ) + J 13r' n ( r 't ) tv ( r, r '
) + 8A „,/8n ( r t ).

(16)

(17)

Proof. Wi—th use of the definition of the exchange-correlation functional (14), the stationary action princi-
ple (11) yields

5A/8 n ( r t) = 0 = 5So/5 n ( r t) —[v ( r t) +„d3r' n ( r 't) w ( r, r ') + BA „JBn ( r t) ].
This is precisely the Euler equation for a system of
independent particles moving in the effective poten-
tial (17). Therefore, the exact density of the sys-
tern can be obtained from a set of single-particle or-
bitals fulfilling the effective td SE (16).

It should be emphasized that the functionals
P[n], B[n], and A„,[n] as given by (9), (12), and
(14), respectively, are defined only for v-
representable densities. The functionals remain un-
defined for those densities n ( r t) which do not cor-
respond to some potential v( r t) This . fact may
cause mathematical problems, e.g. , when variations
SA [n] with respect to arbitrary densities are re-
quired. At present, it is not clear how large the set
of v-representable td densities is.

In the theory presented here, 40 is an arbitrary
but fixed initial state. Therefore, the functionals
P[n], B[n], etc. , are defined only for td densities
which all have the same initial shape n( r tp) For.
this reason, td theory presented above cannot be
compared directly to the stationary Hohenberg-
Kohn-Sham theory since the initial densities corre-
sponding to stationary ground states are of course
all different. However, if the initial state 40 is al-
lowed to vary within the set of nondegenerate
ground-state wave functions, it is easy to prove in-
vertibility of the extended map G:(@o,v( r t))

n( r t).'4 For the set of densities obtained in
this way, theorems 2, 3, and 4 hold in precisely the
form given above and can be shown to reduce to
the common Hohenberg-Kohn-Sham theory in the
limit of stationary ground states. '5

Theorems 2, 3, and 4 provide a theoretical basis
for three different practical schemes: If one is able
to construct the functionals P[n), 8[n], or A„,[n]
within a reasonable approximation then the corre-
sponding densities can be calculated from (7) and
(8), (11), and (15)—(17), respectively. On the ex-
act level the three schemes proven here are, of
course, completely equivalent. However, the most
attractive alternative to calculate approximate densi-

ties is provided by the td Kohn-Sham scheme
(theorem 4) since it will produce a quantum
mechanical (wiggle) structure in the most natural
way.
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