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Scaling Approach for the Kinetics of Recombination Processes
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A scaling theory is developed to describe the time evolution of the irreversible diffusive
recombination process 3+8 inert. Fluctuations are shown to alter radically the decay
laws predicted from the rate-equation approach. For unequal initial densities, the minority
species is predicted to decay as t for short times, crossing over to an exp( —At ) decay for
long times, with n = d/4 and!o. = (d+ 1)/4 for unbiased and biased diffusion, respectively.

PACS numbers: 05.60.+w, 66.10.Cb, 82.20.Db

-Recently the kinetics of the recombination pro-
cess 3 +B inert has been intensively studied
both theoretically' and experimentally. ' In
this reaction, the spatial distribution of the particles
at time t = 0 is random but globally homogeneous,
and for t ) 0, one or both of the particle species
move diffusively. There is no interaction between
particles of the same type, but when an 3 and a B
particle meet they instantly and irreversibly com-
bine to form an inert species. The basic question is
to calculate the number of particles remaining after
time t.

A standard approximation to describe the kinetics
of this reaction is the following rate equation'.

dp~ (t)/dt = —kp~ (t)ps(t),

where pq(t) and ptt(t) are the densities of species
A and B at time t, and k is a rate constant. Such an
equation should be valid when spatial fluctuations
in the particle distributions are neglected. At long
times, the solution to Eq. (1) is

p~(t) =—I/«[p~(0) = ps(0) ~.

pq(t) =—exp[ —k[ps(0) —pz(0)jt}

[p (0) & p (0)}.
Equations (2) represent the mean-field prediction

for the decay law, as spatial fluctuations are neglect-
ed in the rate equation.

However, both theoretical and experimental stud-
ies indicate slower decay laws, proportional to t
0 & n & 1, when p„(0)=p~(0), and proportional
to exp( —kt~), 0 & P & I, when p„(0) & ptt(0}
One of the primary theoretical approaches for this
problem has been the continuous-time random-
walk (CTRW) model. ' 4 Although the CTRW
method predicts the observed anomalous decays,
the exponents n and P depend on the assumed
form of the waiting time distribution of the CTRW.
It is not clear from the CTRW approach if the decay
can be described in terms of universal scaling laws,
and whether the spatial dimension d plays a funda-
mental role. Very recently, however, Toussaint and
Wilszeks considered the recombination process in
the framework of the discrete-time random-walk
model. They found that spatial fluctuations in the
particle densities play a basic role in determining
the long-time decay. For equal initial densities of A

and B particles both of which diffuse isotropically,
they found that p(t) decays as t / for spatial
dimensions d & 4.

In this Letter, we develop a scaling approach to
treat the more general situation of arbitrary initia1
densities of the two species, and also the case of a
relative drift between the two species. We find a
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(—(2(lp (0) )' '- [ (0)1"')) "' (5)

where a factor of 2 has been included for conveni-
ence. This length also determines a characteristic
time scale, t&

—g2, which is the time required for a
particle to diffuse across a region of linear dimen-
sion g.

For short times, t & tt, local fluctuations in the
density difference will determine the decay rate. In
this time regime, we expect to have a power-law de-
cay of the particle density. For pz(0) pa(0), g
diverges, and the power-law decay should hold for
all times. For p„(0) A pa(0), we expect a new
type of decay at long times which is governed by
the spatial fluctuations of the majority species, rath-
er than density-difference fluctuations. This cross-
over can be expressed in terms of the following
scaling A nsatz.

(6)pg, a(t) CA, at fA a(t/tt)

where fz(x) and fa(x) are scaling functions of the
dimensionless variable x = t/tt. , and Cz and Ca are
constants which depend on pq(0) and pa(0).
These unknown quantities can be fixed by use of
scaling and the conservation of the particle density

power-law decay, t, for short times, crossing
over to a quasi exponential decay, exp( —Ata), for
long times, with o. conjectured to be equal to p.
We derive the exponent o. for both the case of iso-
tropic diffusion and the case of a relative drift. We
also elucidate the nature of the crossover in terms
of simple arguments involving the spatial fluctua-
tions of the particle density difference.

Consider a spatial region of linear dimension l
and volume ld. The initial number of A and Bparti-
cles is

N~ a —
p& a(0) l + [p~ a(0) l"]

where the second term indicates local fluctuations.
If p„(0) & pa(0), the particle number difference in
this volume will be

N, —N, —[p, (0) —p, (0) l l'

+ ([pg(0)]"'+ [pa(0) 1"')l"". (4)

In the absence of fluctuations, Nz —Nz is always
less than zero for any size volume. However, fluc-
tuations make it possible to have N& —N&) 0
within a sufficiently small region. The size of this
region can be estimated by considering the max-
imum positive fluctuation in N„and the maximum
negative fluctuation in Na in Eq. (4), and setting
Nz =Nz. From this condition, we find a charac-
teristic length scale

difference,

~p= p-(t)-p (t) =p (0)-p (0).
From Eq. (6), we have

5p = [ Cafa (x) —Cg fg (x) ] t (7)

+ [p„a(0)lii l" ' ]' '. (IO)

Following the arguments that led to Eq. (5), we
find a characteristic parallel length along the drift
direction, $ ii, which varies as

(2([pa(0)]' ' —[p~(0)]' 'j) ' "+"(II)
and a perpendicular length, gi —()( . On the basis
of scaling, the time dependence of the particle den-

On the other hand, from Eq. (5), Sp can be written
as

t'([pa(0) ]'t'+
I p~ (0) ]'t')/&.

Substituting this in Eq. (7) yields

Cafa(t/t() = —,
'

([pa(0) l"'+ [pg (0)]"')t( "'t
+ C~f~ (t/tg).

Finally, from the fact that fa is a function only of
the scaling variable t/t~, and the condition Cz = Ca
when p„(0)= pa(0), we find

n=d/4,

C~ = Ca= ([p~(o)]"'+ [pa(o)]"')/2

Our result for n thus yields the t dt4 decay first
predicted by Toussaint and Wilczek, ~ and we also
recover their [p„(0)]tt2 amplitude for equal initial
particle densities. This decay law should hold below
four dimensions where fluctuation phenomena
should dominate at large times.

The arguments given above can be extended to
the situation where there is a relative drift between
the A and B particles in addition to the diffusive
motion. In this case, there are two different length
scales which characterize the spatial volume ex-
plored by each particle. This may be relevant for
understanding recombination of charged particles in
an external electric field. Along the drift, the parti-
cle will move a distance t))

—t, while in the d —1

perpendicular directions, the particle will move a
distance lj —t' . Thus the volume explored by a
drifting, diffusing particle will be proportional to
l i( li ', and this volume grows with time as
t d+' l' . Within such a volume, the local number
of particles will be

&~,a —
p~, a(0)libel' '
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sity should now have the form 100 g0 J, I I I
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where t&
—(II is the characteristic time for a parti-

II

cle to drift through a region of volume (II(f
Employing similar reasoning as in the case of un-
biased diffusion, we find that the relations between

fA and fB, and between the constants CA and CB,
are the same as for unbiased diffusion, but that the
exponent equals (d+1)/4. This prediction for u
should be valid below an upper critical dimension of
3, while above this dimension, the t decay
predicted by the rate equation should hold. The
lowering of the critical dimension compared to the
case of isotropic diffusion stems from the fact that a
drifting particle can explore a larger volume per
unit time than a purely diffusing particle. There-
fore fluctuations should play a relatively less impor-
tant role in the case of a finite drift. A similar situ-
ation occurs for a number of percolation models
and transport problems in which there is a preferred
direction. "

To obtain the long-time decay law when the ini-
tial particle densities are unequal, we require the
dependence of the scaling functions fA (x) and

fB(x) for x » 1. We expect the following asymp-
totic behaviors:

t

const, x « 1,
fA, B

exp( —x ), x»1. (13)

The limiting behavior for x &( 1 is required to give
the known short-time algebraic decay, while the
long-time behavior of f is suggested by the follow-
ing heuristic argument. The rate equation, Eq. (1),
can be modified to yield the correct t decay law

in the case pA (0) = pB(0) by allowing for a time-
dependent rate constant. The requisite time depen-
dences are

0 00 0

10-1- 0
Kl

.+l02— O

10+ I I I I I I III I

10 & l02

(c)
I I I I I I I

101 100 1OI

&(O'B(O) —I/t04(O) ) t

&~
0

102 10&

k ( t) —td 4 ' (unbiased diffusion),

k(t) —t +' ' (biased diffusion).
(14)

For unequal initial densities, we assume that an ef-
fective rate equation with a time-dependent rate
coefficient and a density dependence of pA (t)pB(t)
will continue to be valid. This, together with the
assumption of a scaling form for p„(t), gives

pA (t) —exp( —IlpB(0) I' —
IpA (0)1' It ),

(1S)

with n= d/4 and n = (d+1)/4 for unbiased and

FIG. 1. Sample computer simulations for isotropic dif-
fusion in one dimension. In (a), we show the depen-
dence of p„(t)/p„(0) vs t for a number of initial condi-
tions, while in (b), we show —ln[pA(t)/pA (0)] vs t for
the case pA (0) = 0.1, pB(0) = 0.2. The dashed lines have
slopes of —

4
and + 4, respectively. These data

1 1

represent one run on a chain of 106 sites in (a), and ten
runs on a chain of 2.5 x 106 sites in (b). Because of the
large system size, statistical uncertainties are negligible
until the final stages of the decay. In (b), these errors
are of the order of the size of the data points or less. In
(c), the use of scaled variables leads to a collapsing of the
data of (a) onto a single universal curve. The scatter of
the data at long times provides an estimate of the statisti-
cal error.
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biased diffusion, respectively.
To test these ideas, as well as the scaling results,

we have performed numerical simulations in one
and two dimensions. For simplicity, we consider
the situation where the A particles are moving and
the B particles are stationary. In one unit of time,
each A particle randomly hops to one of its
nearest-neighbor sites. If an 3 particle happens to
land on a site occupied by a B particle, both parti-
cles are immediately removed from the system.
Typical results are shown in Fig. 1. For
pz (0) (pz(0), the decay follows the power law of
the pz(0)=pq(0) case for short times, and at
longer times there is a crossover to a faster decay.
In one dimension this can be well fitted by the form
exp( —At ) with n = —, [Fig. 1(b)j. In Fig 1(c), the
data of Fig. 1(a) are displayed in terms of scaled
variables, and the collapsing of the data supports
the general validity of the scaling approach.

Our scaling analysis can also be extended to study
a much wider range of decay processes. One exam-
ple is the decay 3+3 inert. This decay is in a
different universality class than the reaction
A + B inert because there is no conservation of
the particle density difference. From scaling, we
find that the decay of A + A inert, under condi-
tions of isotropic diffusion, should be i di2, below
an upper critical dimension of 2, in agreement with
the observation of Toussaint and Wilszek. s In addi-
tion to regular lattices, both reactions may also be
studied on self-similar structures, such as a percola-
tion cluster at the threshold; some of these situa-
tions have been considered independently by Mea-
kin and Stanley. ' In this case, the characteristic
length scale introduced in Eq. (5) will involve the
power 2/df, where df is the fractal dimension of the
structure, while the relation between time and

dwlength scale can be expressed as t —( ",with

d„) 2.'3 These considerations lead to a decay of
t di4 for the reaction A + B inert, and t di2 for
A+A inert, when the initial densities are equal
and when the diffusion is isotropic. Here d is the
fracton dimension' of the structure on which the

decay is taking place. For percolation clusters at
threshold, we therefore expect superuniversal de-
cays independent of the spatial dimension, if the

4
Alexander-Orbach conjecture that d= —, is correct.
These decay laws have been recently confirmed
through computer simulations. " A final interesting
situation is W-body reaction processes such as
NA inert (no conservation law), or A t

+A2+. . .+A~ inert (conservation law $, ,pq,
xe2~"iN=0). We find evidence of new universali-

ty classes for these systems.
The Center for Polymer Studies is supported in

part by grants from the U. S. Army Research Of-
fice, the National Science Foundation, and the U. S.
Office of Naval Research.

&A. Blumen, J. Klafter, and G. Zumhofen, Phys. Rev.
8 27, 3429 (1983).

2M. F. Schlesinger, J. Chem. Phys. 70, 4813 (1979).
3W. P. Helman and K. Funabashi, J. Chem. Phys. 71,

2458 (1979).
4K. L. Ngai and F. S. Liu, Phys. Rev, B 24, 1049

(1981).
5D. Toussaint and F. Wilczek, J. Chem. Phys. 78,

2642 (1983).
6J. M. Hvam and M. H. Brodsky, Phys. Rev. Lett. 46,

371 (1981).
7J. Orenstein and M. Kastner, Phys. Rev. lett. 46,

1421 (1981).
8Z, . Vardeny, P. O' Connor, S. Ray, and J. »nc, Phys.

Rev. Lett. 44, 1267 (1980).
9J. Mort, I. Chen, A. Troup, M. Morgan, J. Knight,

and R. Lujan, Phys. Rev. Lett. 45, 1248 (1980).
ioP. B. Kirby, W. Paul, S. Ray, and J. Tauc, Solid State

Commun. 42, 533 (1982).
t tSee, e.g. , S. Redner, Phys. Rev. B 24, 3424 (1982).

P. Meakin and H. E. Stanley, J. Phys. A 17, L173
(1984).

i3See, e.g. , Y. Gefen, A. Aharony, and S. Alexander,
Phys. Rev. Lett. 50, 77 (1983).

t4S. Alexander and R. Orbach, J. Phys. (Paris), Lett.
43, L625 (1982).

958


