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Lovv-Frequency 1/f Fluctuations of Resistivity in Disordered Metals
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The concept of tunneling systems has been very successful in explaining phenomena
which occur in disordered solids at small energies and with long relaxation times. It is shown
in this Letter that fluctuations in the tunneling systems will also produce fluctuations in the
electric resistivity and that the power spectrum of these resistivity fluctuations is inversely
proportional to the frequency.
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There is a rather large variety of metals which
show fluctuations in resistivity on a very long time
scale. ' It has been found, in particular, that the
power spectrum of these fluctuations is approxi-
mately inversely proportional to the frequency; for
this reason, this phenomenon is commonly referred
to as 1/f noise. 2

Though there may be various mechanisms which
produce this type of noise, it has been recognized'
that activated random processes may easily lead to
long-time fluctuations. It is the purpose of this
note to recall that, besides thermal activation, quan-
tum mechanical tunneling may play an important
role, particularly at low temperatures. It is known
that there are tunneling systems in disordered
solids3 which exhibit fluctuations on very large time
scales; and we will show how resistivity fluctuations
arise by coupling of conduction electrons to the
tunneling systems.
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—Ap
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It is a most important experimental fact that the
distribution P(A, y) of a collection of tunneling
systems is almost independent of 5 and X; hence

We take the interaction of one tunneling system
with the conduction electrons to be of the form

There is no truly microscopic theory for tunnel-
ing systems available. However, one assumes3 that
one system consists of a generalized coordinate of
ion configurations with two minima in the potential
energy. These two states with bare energy + —,5
are connected by a tunneling matrix element 5p
=It tdo exp( —h. ), where coo is of order of the Debye
frequency. Consequently, this system has a Hamil-
tonian of the form

Hi'„, = —X —[u(q)I'+u((f)tT3]ck ck+ q
kqs

(3a)

where c-„,, c-„, are the usual creation and annihilation operators of conduction electrons. This type of in-

teraction is of standard form'b except for a new term proportional to the unit matrix. Though being ir-
relevant for relaxation processes, this term is most important here since it leads to a difference in the scatter-
ing probabilities —,

~
u (q) + v(q) ~

of the electrons in the two states of the tunneling system.
The Hamiltonian (la) can be diagonalized by a unitary transformation,

A

HTs = —,Ea.3, E = (6 + Ao) '

Similarly, we obtain from Eq. (3a)

(Ib)

H;„,= —X —[u2(q)1+ (b/E)u(q)tr3+ (60/E)v(q)a-t]ck ck+-
kqs

Transitions in the tunneling system will be induced by the term proportional to o-~. Using Fermi's "golden
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rule, "we obtain the relaxation rate for the return of the pseudospin a.
3 to its equilibrium value

Q2
r = —N(0) ( I I ) Fs coth (4)

where N(0) is the electronic density of states (per spin and unit volume), and where ( ) „s means an ap-
propriate average over the Fermi surface.

Of importance will be the power spectrum of the pseudospin fluctuations,

S(o)) —= ((5a-3) )„—= dt e'"'l —, ([ a3(t), a3]+) ( a3) ] AX"(cu)coth

The right-hand side follows from the dissipation-
fluctuation theorem. In the following, we are in-
terested in the regime where hew, tI" (( kT. Then
the pseudospin fluctuations are purely thermo-
dynamic fluctuations. 4 In this case one may assume
that the susceptibility is of relaxational form,

I'( —ice+ I ) '. It follows that

s(~;E, r) = 1 2I'

cosh E/2kT co2+I

where the prefactor is the magnitude of the
"equal-time" fluctuations. 5

We take the average of S with respect to the dis-
tribution (2a) most conveniently by introducing3

P(E, I ) = , PI' '(1 ——I'/I' )'i . (2b)

Note that the crucial dependence on the inverse of
I appears whenever I depends on some power of
b, o. Thus, Eq. (2b) is valid also when, at higher
temperatures, phonon scattering contributes
predominantly to I . The maximal relaxation rate
r~(E) =r(E, b, o=E) results from the require-
ment b,o~ E. Quite generally, I ~ is very large
compared to the frequencies we are interested in.
Thus, any corrections depending on r~' may be
neglected and we obtain

S(~) =J dEdI'P(E, I') S(co',E, r)
= (mkT/lo) l)P. (6)

For the sake of simplicity, let us assume that the
electrical resistivity is determined predominantly by
scattering of electrons at static impurities. Thus, we
define po=m/e2nr; p, where the scatteringrateis
given by6

I/rj~p ——(27r/l )N (0) n mp ( I v;~p I ') F, .

In this relation, v; ~ is the impurity potential, and

n; ~ is the impurity density.
Consider now the scattering of electrons at the

tunneling systems. We observe that the duration of
a scattering event is very short on the time scale of
pseudospin fluctuations. This allows us to consider
the pseudospins as adiabatic variables which have

~'=
2

Re(u' v')FS/(lv, l')FS (7b)

Note that lA'/E'l = 1 is an adequate approximation
in the present problem.

As a result of their local nature, there are no
correlations between different tunneling systems.
For simplicity, we will neglect any interdependence
between the interaction potentials and the energy
parameters of a given system. Using Eq. (6), we
obtain for the power spectrum of resistivity fluctua-
tions

s, ( )—= ((5 )').
'2

Po
( 2) 1p7rkT

Bn;p "V
where the quantity P has now to be taken per unit
volume.

Concerning the magnitude of (n2),„,we consider
the simplified model of a tunneling system present-
ed in Sec. 8.3 of Ref. 3b. It consists of two ions
with coordinates R;=R, + d, /2 (a-, = +1) and
with scattering amplitudes p, (q) expiqR;. Then
—, Reu'v = 4lp, l2 sin@sin5, where 4 = q (R~ —R2)
and 5= q(dt —d2)/2. One estimates that 4& and 5
are of order 1 and 10 ', respectively. Let us as-
sume that (sin24), „=—, and (sin 5)„=—, x 10
Furthermore, one expects N(0) lp, l

as well as

(8)

definite values at any instant of time. Consequent-
ly, the contribution of a tunneling system (labeled
by j) to the scattering rate can be calculated accord-
ing to 7

1 1 j
N (0)—ui+, vJa )( t)1 m 1 b,~

2t V

Evidently, this expression contains a time-
dependent part which is linear in a.t3(t). Thus,
fluctuations in the pseudospins of the tunneling
systems produce a time-dependent addition to the
resistivity which we present in the form

5p(t) = (Rpo/Bn; p) X,.u—4a)(t), (7a)
1

where
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&(0) l~; J to be in the range 10 ' —1, which is typ-
ical for scattering centers of atomic dimensions.
We take the smallest value. Therefore,

(~2) = 10 2' (tip+/tin. ) = 10 26 Q cm4.

P=10 erg ' cm

where the last figure is considered to be typical for
disordered solids. 3 Then, it follows that

Sp(~)

= (0.7x10 0 cm K ') & 'T(2~/lc0l).

At T = 100 K, the value of this expression is of the
same order of magnitude as a typical experimental
noise power.

The (1/f)-frequency dependence in Eq. (8) is a
consequence of the Ansatz (2), where the distribu-
tion function P'(A, h. ) has been taken to be in-

dependent of A. . Clearly, there have to be re-
strictions on this form. The simplest one is in the
form of an upper cutoff A, ,„ in the tunneling
parameter which causes a low-frequency cutoff in
the (1/f) noise spectrum. From experimental evi-
dence, one expects A. ,„ to be as large as 20. In ad-
dition, there is the possibility of a weak A. depen-
dence in the distribution function. In this case, the
noise power would be proportional to f, with o.

being close to 1.
The linear temperature dependence in Eq. (8) re-

flects the property of P'(6, X) to be independent of
b, . One expects that this is true only for energies b,

smaller than, say, '0 100 K. In case P'= P'(6) is in-
dependent of X, one obtains a temperature depen-
dence S ~ f dA P'(b, )/c soh(6/2T).

The resistivity fluctuations as discussed here
result from many independent and localized ele-
mentary processes. Thus, these fluctuations are
Gaussian distributed and uncorrelated in space.
However, there exist angular correlations of the
type discussed by Weissman and Black et aI." In
terms of the simplified model3b presented previous-
ly, such correlations depend on the relative orienta-
tion of the vectors Ri —R2 and d&

—d2.
We wish to recall the picture of a tunneling sys-

tem where two minima in potential energy are
separated by a barrier. As an estimate, we take the
average height of the barrier equal to 2h ~OX. . Then,
it is clear that for temperautres kT)) hcoo, thermal
activation will dominate the transitions between the
two minima (levels). Consequently, the relaxation
rate of Eq. (4) should be replaced by

r = ~ocosh(E/2 T) exp(&~0), /kT),

and one obtains a temperature dependence of S~

which is larger than the expression obtained previ-
ously by a factor of kT/@~0.

However, it is most likely that at higher tempera-
tures, the concept of two-level systems loses its
meaning. Rather, one expects multilevel systems
which consist of many minima in the potential en-
ergy to become important. Also, the differences in

energy may now be comparable or much smaller
than the thermal energy. Collective aspects recede,
and one will preferrably talk about reorientation and
migration of defects. On this basis, a theory of
thermally activated 1/f noise has been developed
recently. '2

We return to low temperatures and to tunneling
systems where the present theory is also able to ex-
plain enhanced resistivity fluctuations of a metal at
its superconducting transition. It is known that
there is a weak dependence of the transition tem-
perature on the disorder which is induced by a
change in the electron-phonon coupling due to im-

purity scattering. According to a theory' there is a
change in the transition temperature proportional to
the scattering rate, 5T,/T, =hb/eFv; „, where" b

may be of the order 1—10. That theory can also be
applied to the present problem. In close analogy to
5p(t) of Eq. (7), we obtain now a time-dependent
shift 5 T, (t) of the transition temperature. Further-
more, the power spectrum of these fluctuations is
given by

S, ( ) -=((5T)')„

Tc
( 2) kTP 27r

rln;, '"
V

It is clear that at the resistive transition, fluctua-
tions in T, have the same effect as temperature
fluctuations. '4 Therefore, S (co) =P2ST (c0), where

P= tip/t) T, is large if the resistive transition is
sharp. The observable effect may now be many or-
ders of magnitude larger than far above T, . As a
disadvantage we note the difficulty of varying the
transition temperature (e.g. , by an applied magnetic
field). Furthermore, no conclusion on spatial
correlations is possbile since there is no simple
theory of the resistive transition in a superconduc-
tor.

In conclusion, we have shown how to connect 1/f
noise of resistivity fluctuations with tunneling sys-
tems. These systems are an inherent feature of
disordered solids; but it is worthy of note that they
have been found at rather large densities even in
solids with almost perfect crystalline order. '5

Though there is no microscopic theory of tunneling
systems available, their properties are already
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reasonably well known from experiments. Resis-
tivity noise measurements could add further infor-
mation, particularly for larger energies and for very
small tunneling probabilities.
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