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Photon in U(1) Lattice Gauge Theory
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A Monte Carlo calculation of the spectrum of four-dimensional U(l) lattice gauge theo-
ry has been carried out. In the scaling limit p p massive 0+, 1+, and 2++ states are
indicated. On the critical line p & p striking evidence is found for a massless photon,
and no signal is found for other states.
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In the strong-coupling (SC) region (P small)
Abelian as wel1. as non-Abelian lattice gauge the-
ories (LGT) are in the confinement phase. The
famous confinement problem for non-Abelian LOT
consists in proving that this phase extends to the
continuum limit: lattice constant a —0, P -~.
On the other hand we would like to recover a free
field theory of massless photons from the four'-
dimensional Abelian U(l) LGT. In a fundamental
paper on LOT Wilson' therefore conjectured that
the U(1) LGT undergoes a phase transition as the
coupling constant P is varied, with a nonconfin-
ing phase at weak coupling.

Later the existence of these two phases has
been rigorously proven by Guth2 and the result
has been generalized by Frohlich Bnd Spencer. '
Monte Carlo calculations4 indicate a second-order
phase transition at P = 1.0. For large enough P
perturbation theory becomes applicable and the
existence of a zero-mass state has been proven. '
No rigorous results exist for the whole region
p & p, . In analogy to the two-dimensional X-F
model one expects a critical line of mass-zero
field theories. In this Letter we demonstrate
by a Monte Carlo (MC) simulation that this pic-
ture is correct. Our massless excitation has the
quantum numbers l' of an axial vector and pro-
vides direct evidence for the existence of a mass-
less state with the quantum numbers of the pho-
ton. Let us consider in free-field theory a 1
photon vector state |p,s) with p momentum and
s hei. icity. The combination

Ip) = 2v2(lp, s) —Ip, —s))
has parity P=+1. %ith use of free fields it is
easily checked that in the naive continuum limit
this state has an overlap with our 1' state.

We consider U(1) LGT with the Wilson' action.
At each link b of a hypercubic four-dimensional.
lattice there is an element U(b) =exp(i0, )~U(1),

Operator g ]

Operator + 2 Operator g 3

Operator g 4
FIG. 1. Wilson loops up to length 6.

and averages are calculated with the partition
function

Z=J II d0, exp[PHeg U(p)].

For each plaquette P, U(P) is the ordered pro-
duct of the four link matrices surrounding the
plaquette.

For our MC cal.culation we use as in Ref. 4
the Metropolis method and approximate U(1) by
Z(1000). Most of our cal.culations are carried
out on an 4'~ 8 lattice with cyclic boundary con-
ditions. 4 is the spacelike box and 8 is the ex-
tension in Euclidean "time" direction. At P =1.3
some finite-size consistency checks are carried
out on an 8' lattice.

Our results are based on (diagonal. ) correla-
tions between Wilson loops up to length 6, as de-
picted in Fig. 1. In the work of Kogut, Sinclair,
and Susskind' and of Berg and Billoire' the irre-
ducible representations of the cubic group on
these were constructed. We wish to remind the
reader that there exist five irreducible repre-
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sentations of the cubic group. In the standard no-
tation for point groups A, and A2 are the one-di-
mensiona1, representations, E is the bvo-dimen-
sional representation, T, and T, are the three-
dimensional representations. Under certain as-
sumptions' we have the following correspondence
in the continuum limit of a LGT:

PC PPC T PC 1PC FPC 2PC
1 9

T - 2 and A. —32 2

(2)

2++

0++

i I l l

0.8 0.9 1.0 1.1 12 8

FIG. 2. &(~k~= to=i) for the three lowest-lying
states.

(I' denotes parity, C denotes charge-conjugation
parity).

In the present paper we consider for some of
the irreducible representations states of momen-
tum k = (k~, k~, k, ), k, = 2vn/L (n = 0, +1, . . . ,
+ [L/2]); L is the spacelike lattice size. Prob-
lems with phases are avoided by the trick of Ki-
mura and Ukawa': We first construct the irre-
ducible representation in question on a spacelike
cube and then we perform the Fourier transfor-
mation for the cube operators C,.(x, t):

C,.(k, t)=Q„-e'"'" C, (x, t).

Here x is the position of the center of the cube.
The index j=(OP, R) labels the operators OP and

representations R =&, , T, ', E", etc. Of
course aWilson loop may contribute to several.
cubes. In Ref. 7 this construction was ca,rried
out for the one-plaquette operator in the A,"
representation. The generalization to other

representations and operators is, however,
straightforward.

We will calculate correlation functions

p, (k, t. )=Re(OI C, *(k,t)C&(k, O)l 0)

and define corresponding energies by means of

E, (~k~, t)=-(1/t) «[p, (k, f)/p, (k, O)]. (5)

These energies are upper bounds for the energy
Es(lkl) of the lowest state, which couples to the
irreducib1. e representation R in question. Ac-
cording to Eq. (2) we now abbreviate these states
by 0",1', 2", etc. If the relativistic energy-
momentum dispersion is restored, we expect

E (1k')=(m '+k')'"

In the practical MC ca,lculation statistical noise
limits us to rather short distances: t =0, 1, and
only in some cases are reasonabl. e results also
obtained for t=2. If the state C&(k, t)1 0) is a
good approximation to the wave function of the
lowest state in question, already E,(l kl, 1) may
be a rather close bound to the energy E,.(l kl).

We now present our resul. ts. At each consid-
ered P value on the 4'&& 8 lattice we have per-
formed about 10000 double sweeps and we did
measurements after ea,ch double sweep. We have
used random upgrading' and a sweep is defined
by upgrading each link variabl. e once in the mean.
At each P value, between 1200 and 1800 sweeps
without measurements were done for reaching
equilibrium.

Let us first consider momentum k= 0 states.
In Fig. 2 our distanc~ t =1 energy results for the
lowest-lying states -0", 1', and 2" are given.
For guiding the eyes MC points of the same state
are connected with straight lines. The bounds
E(k=0, t=1) on the energies (=masses) de-
crease as one approaches the critical point from
below: P -P,= 1.0 (P& P,). The energy results
from distance t =2 are of course better (= lower)
bounds, but as in non-Abe1. ian gauge theories' re-
liable results can hardly be obtained if E(~kj =0,
(=1)~ 2. For the states 0" and 1+ the distance
t=2 Lesu1. ts are given in Table I. We use always
the operator which gives the lowest result a1.so
used at distance t =1. For the other considered
representations distance t = 1 energies are high-
er (see Table II).

From Fig. 2 we note a clear difference between
U(l) and non-Abelian gauge theories: the rela-
tive lightness of the 1' state. To summarize:
In the scaling limit P -P, a spectrum of massive
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T&&LE I. E(0 =0, t=2) results for 0++ and 1+

states. Because of the limited statistics the given er-
ror bars are not always reliable. In brackets the used
operator as explained in the text is indicated.

Z„++(0,2), (Op) Z~ +-(0, 2), (Op)

0.90
0.95
0.975
1.0
1.025
1,05
1.1

2.4+0.3, (3)
1.82 +0.10, (3)
0.94+0.10, (2)
0.83+ 0.05, (2)
1.58+0.10, (3)
2.04+ 0.11, (2)

(4)

2.9+0.3, (3)
2.25+0.10, (3)
1.99+0.06, (3)
2.27 +0.15, {3)

0", 1', 2" (and eventually other) states is in-
dicated with

m(0")& m(1' )& m(2").

As in non-Abelian gauge theories it would be
pointless to estimate precise mass ratios with
the present method. As a result of bad wave
functions, ratios at distance t =1 are not stable
and at distance t =2 statistical noise is a severe
problem. For small values of P (P = 0.8) our re-
sults for 0" are, within statistical errors, in
agreement with existing strong-coupling expan-
sion results. ' Qualitatively our results below

the critical point b, are in agreement with a
scenario of a spectrum of massive magnetic mon-
opole s.'

Above or near the critical. point P, the short-
distance energy definitions E,(O, t ) begin t.o ap-
proach their spin-wave (P -™)limits. For t=1,
2 the values are presumably high. Some leading
order (P -~) calculations were carried out in

I I I I I

0.8 0.9 1.0 1.1- 1.3 " 1.5 " 2.0

E(lk 1
=2~&4. t =l) for the three lowest-

lying states.

beefs. 6 and 10. In the present case on a 4'x8
lattice these results read E&, „,~+&(0, 1) = 3.96
and E&, s++& (0, 1)= 3.83.

Our final Fig. 3 represents results from the
one-plaquette operator for the 0", 1', and 2"
states with momentum

lkl = 2~/4. (8)

For the T,' representation (this means 1' axial
vector), a dramatic change (as compared with
Fi.g. 2) is observed. For P -P, the T, ' energy
values start to undershoot the A," and F. ener-

TA&f«l. E(lkl =O, t=l) results for A2++, A) -, A,-, E--, T2++,
7'2+, 7'& +, 7'2 +, and 7'2 states.

p =0.9 p =1.0

++ (Op)

A2', (OI')

g, --, (op)
~--, (op)

7 ++ (Op)

7,', (op)

(op)

7,-+, (op)

Z"2, (OP)

4.83+0' 8453 (2)
O

0 5.48, (4)

4.92+() 38, {3)

5.29", ,",, (3)

4.58 + 0.20, (3)

4.98+0 3(, (2)

&5.4S, {3)

5.40+()'32, (3)

&6.26, (3)

4.84+0' 43, (2)

)4.85, (4)

5 80+2. 40 (3)

5.02',",', , (3)

3.76 + 0.10, (3)

5 38+0.67 (2)

&5.25, (3)

4.25+0.15, (3)

P
&~+0, 73 (3)

D

3.95 + 0.20, (2)

5 68+0 ~ 87 (4)

~ ~ ~ (3)

s ~ ~ (3)

3.77+0.08, (4)

4.66 + 0.25, (2)

5 60 0 g4 ~ (3)

4.23+0.18, (3)

5.36'0 6»7, (3)
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T&&« ill. E(lk I
=»/4, t =2) results for the pho

ton 1+ .

~((, ~, +-)(2m/4, 2)

0.90
0.95
0.975
1.0
1.025
1.05
1.1
1.3
1.5

2.70 + 0.20
2.22+0 09
1.63+0.03
1.51 g 0.02
1.44+ 0.02
1,41 + 0.02
1.37 + 0.02
1.36 + 0.02

gies, and for p & p„p -~ we find

E&, r +-, (2~/4, 1)—const = 1.38. (0)

From the relativistic dispersion l.aw (6) of a free
photon we get [(2m/4)']'~' = n/2 ~1.57, and the
discrepancy with (9) is argued to be due to our
small spacelike lattice. Indeed replacing equa-
tion (6) by Es(l kl) = [ms2+ Q,.(2- 2cosk,.)]'~'
yields [2 —2 cos(2&/4) ]'~'.= W2 = 1.41 in good agree-
ment with (9). Distance t =2 resul. ts are similar;
they are collected in Table III. Furthermore we
did a finite-size check at P =1.3 on an 8' lattice.
We carried out 3000 double sweeps with meas-
urement (186 sweeps for equilibrium). The re-
sults for the T,' state and lowest momentum
lkl &0 are

because for momentum k= 0 a power-law behav-
ior is expected. Applying then definition (5) re-
f l.ects only the short-distance power l.aw and does
not give any information about the real mass of
the state.

The interested reader may think about doing
some further checks. For instance analytic (spin-
wave) calculations can be carried out, and one
can also consider directly a 1 vector state in a
MC simulation, as it follows from the classifica-
tion of Ref. 6 that there are several length-8 Wil-
son loops which have an irreducible T, repre-
sentation. Finally the outlined MC procedure may
also be useful for detecting massless excitations
in other lattice theories, for instance phonons in
solid-state physics, and considering momentum
eigenstates will certainly also be useful. in glue-
ball calculations for non-Abelian lattice gauge
theories.

In conclusion we have recovered the massless
photon from four-dimensional U(l) lattice gauge
theory by means of a MC simulation. This is a
nice example- for the possibl. e power of MC tech-
niques and a sensitive distinction between Abe-
lian and non-Abelian lattice gauge theories.
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E(2v/8, 1) = 0.870 + 0.036,

E(2w/8, 2) = 0.780 a 0.033,
(10)

in good agreement with the relativistic disper-
sion [(2v/8)']' ' = v/4 =0.785.

We interpret the resul. t as clear evidence for a
massless photon on the critical line p & p, . It is
amazing that the photon can be detected at short
distances in a MC calcul. ation on a finite lattice,
al. though the correlation length is infinite. For
momentum k= 0 the power-l. am behavior of the
correl. ation function l.eads at short distances to
spin-wave results, which prevent us from seeing
massless excitations. By giving a small momen-
tum k to our considered states we can, however,
cl.early project a massl, ess 1' axial vector. This
implies that other excitations in the T,' channel
have a mass much higher than 2m/4 or decouple
from the one-pl, aquette operator. Otherwise we
woul. d not get a good projection onto the energy
E]-, = I kl from considering correl. ations at such a
short distance like t =1. There is no contradic-
tion between the 1' behavior in Figs. 2 and 3,
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