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Nature of the Beam-Density Effect on Energy Loss
by Nonrelativistic Charged-Particle Beams
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The authors present a new formulation of the beam-density effect on energy loss by
charged particles passing through matter, which exhibits an increased loss with a beam-shape
dependence. This arises from a iong-range dipolelike term contained in the two-particle vi-
cinage function for cooperative energy loss by a pair of nonrelativistic particles, A new ana-
lytic expression for the vicinage function, which exhibits the long-range term, is also present-
ed.
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Efficient coupling of beam energy to a target
medium is of crucial importance to the viability of
inertial-confinement fusion, as well as to other ap-
plications of charged-particle beams. For this
reason much effort has been devoted to searches
for energy-deposition —enhancement mechanisms. '
The enhancements, observed or predicted, have
been attributed to several phenomena; for example,
the increase of effective path length in the target by
applied or self-generated fields (see Ref. I for a re-
view and original references), collective beam-
target interactions, 2 modification of the single-
particle deposition rate because of finite target tem-
peratures, 3 ' and the beam-density effect, first
considered by McCorkle and Iafrate. 6 The latter
two effects are closely related in that the beam-
density effect is coherent, cooperative energy depo-
sition by beam particles, while finite —target-
temperature effects can be viewed as the incoherent
interaction of individual beam particles with free
medium electrons which were produced by ionizing
collisions of preceding beam particles. '

The origin of the beam-density effect is the two-
particle vicinage, or proximity, contribution to en-
ergy loss. This phenomenon has been investigated
extensively for nonrelativistic molecular ion clus-
ters, both theoretically7 " and experimentally (see
Gemmell'2 for an introduction to the experiments
and further references). Derivations of the rela-
tivistic form of the proximity function have also
been given, including the Fermi-density effect. '3'4
In this Letter we first present an analytic expression
for the nonrelativistic vicinage function and show
that it has a dipolelike behavior for large separations

between beam particles. This long-range behavior,
which has not previously been realized, causes the
beam-density effect to depend on the shape of the
beam. The implications of these results are that
calculations of the beam-density effect based on the
short-ranged expressions are not qualitatively nor
quantitatively correct and that calculations based on
angle averaging of the vicinage term before integra-
tion over a beam are also not generally correct. Fi-
nally, we present the beam-density effect obtained
for a model beam shape.

A pair of particles separated by R;, has a total en-
ergy loss per unit path length WJ which can be writ-
ten as the sum of the usual single-particle terms
Ws = Z2S, plus the vicinage term W(R,&):

Wi ——Z,2S+ Zi2S+ W(R;i), (I)

where Z is the nuclear charge and S is the stopping
power of a proton. If the two particles coalesce,
then RJ 0 and W(R~) 2Z;Z~S; therefore,

lim Wi= (Z;+ ZJ) S. (2)
RI~~ 0

If attention is focused on the i th particle in a beam
consisting of W particles, then the total energy loss
by that particle is W= Ws+ Wz, where

is the contribution from cooperative energy loss,
the beam-density6 term. The factor of —, in (3)
eliminates double counting of pairs.

The starting point for the derivation of W~ is the
proximity, or vicinage, term for energy loss by a
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pair of relativistic particles with charges Z~ and Z2 as derived in Ref. 13, under the assumption of equal ve-
locities,

OO

W(z, b) —= (4/vr)ZtZ2e'(o), /v)'Re„ i dv vcos(o)~zv/v)e '(1 —P'e)

& Ko(b ~ o)&v (1 —p e)'j2/v), b &
= max(a, b), (4)

where a is the minimum impact parameter. The
Fourier transform frequency v is in units of co~ with
co~~ = 47r Ne2/m, where N is the total electron density
of the medium and e and m are the electronic
charge and mass. The components of R;j which are
parallel and transverse to the velocity are z and b,

respectively, and p= v/c. Ko(Z) is a modified
Bessel function.

The expression for the inverse of the dielectric
function, e '(v), is taken to be that developed by
Sternheimer'5 in his calculations of the Fermi-
density effect:

7l

e '(v) =1+
, (v-nj)(v —p, )

'

where

nj = —iq, + (lj2 —g,')'j2,
()

P ( lj2 j2) 1/2

with !2=p v; + f;. The Sternheimer factor' p is
adjusted to reproduce the experimentally deter-
mined values of the Bethe logarithm, lnI
=$f;In(trull;). In Eqs. (5) and (6), v; is the ioni-
zation potential for the i th subshell of an atom and

I

2qI is the linewidth for bound electrons, while for
free electrons 2q; is a plasmon width in conductors,
or the collision frequency in plasmas, ail in units of

The oscillator strengths f; are normalized so
the gf, = l. If e represents a material containing a
fraction f, of free electrons, then v;=0 and their
associated plasma frequency is l,cuv= f su~.

The beam loss for our model beam can now be
written in terms of the proximity function W(z, b)
of Eq. (4) as

pOO W2+ pOO

W~ = —,„dz„d0„db bp jj(z,b) W(z, b),

where the beam density is p~(z, b).
In order to investigate the beam-shape depen-

dence of 8'z in more detail for finite beams, we
first evaluate W(z, b) for the nonrelativistic case in
which P=0 in W(z, b), Eq. (4). The frequency in-
tegration is accomplished by use of contours around
the first and fourth quadrants of the complex v

plane. ' Looking at Eqs. (5) and (6), one can see
that the contour around the fourth quadrant en-
closes poles at v = 0, The contribution of the resi-
dues of these poles to W(z, b) is

W

Wjt =4ZtZ2e Re X exp
Q)p fj~j
lJ i 0!j pj

lo)p 60)p
/zion, Ko nj . (s)

P (2kscOo),

The integrals along v = + iy yield a nonresonant contribution to W(z, b), Wz, which may be evaluated nu-
merically. For large r, the nonresonant contribution has a dipolelike dependence P2(cos9) r to lowest or-
der, which may be seen in the asymptotic expansion for Wz ' .

-(2k+ i)

W~ = —4ZtZ2e Re Xfj X ( —1)"(2k)! (9)
j-1 j pj k-1

where r = (z2+ b2)' and cos0= z/r. With use of this, an asymptotic expression for W(z, b) = Wz+ Wz is
obtained.

Returning to Eq. (7), the general expression for Wz, we now consider a Gaussian radial profile for the
beam density,

p~(z, b) = nb exp[ —(b/bo)']8(z+ L~)6(L2 —z), (10)

VQ)p ]
L2

( )
expLi + slIl

U

where E, (x) is the exponential integral function.

where 0 is the Heaviside step function. Using this density function in Eq. (7) and performing the integrals
over z and b, while neglecting the small correction for b ( a, Eq. (4), one obtains

r

V Q)& Qp VQ)& 6pEt, (11)
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2v
(12)

o.')o)p ~o

The nonresonant terms are

This integral has been treated by two methods: (a) A numerical contour integration was done along the
same contours used for W(z, b) and (b) the integrand was approximated by replacing e"E,(x) with
ln(1+ 1/x). The result was integrated analytically along v = + Iy to obtain the nonresonant contribution W~
to Wz. If the terms in Eq. (11) containing Lt and L2 are considered separately, then we can write
We= Wz(L&, bo)+ W~(L2, bp). Furthermore, the resonant and nonresonant parts of W~(L~, bp) can be
denoted by Wz(Lt, bp) and W~(Lt, bp).

The resonant terms from the poles of e '(v) at v = o., are

2 GOp
N lfj I A JQJvW(Lbo) =~bonze Re X . exp Lt ln 1+

v . t cled J v

W~(Lt, bp) = —7r honbe
'U

N jf lQ CO

xRe X exp Lt Et
t A~

—PJ 'U

l 0,'~ct)p
L, —E,

U

—Icx cd 2L]J p I
bo

+ exp
lO!~Q)p I 0!~Qjp

Et
U U

p L i+ . (13)
bp

W~(Lt, bp) depends on the ratio L~/bp, therefore
8'z exhibits a beam-shape dependence originating
from W~, Eq. (9). Thus, an angle averaging of
W(z, b) will not result in a physically meaningful
calculation of Wz. Note that the angle average of
P2k(cosH) in Eq. (9) gives zero. Furthermore, sim-
ple arguments, based on field screening distances
taken from single-particle stopping theory, are not
adequate to determine the qualitative nature of the
beam-density effect.

Equations (12) and (13) treat bound and free
electrons in materials on the same basis and are
valid for solids, gases, and plasmas, when appropri-
ate values are used for the parameters in Eqs. (5)
and (6). From Eqs. (12) and (13) we can show that
Hz is proportional to nb, inversely proportional to
the square root of the medium density through cuv,

and inversely proportional to ~n, ~

4. The scaling of
the functional dependence of Wq on the beam
shape is given by v/~n, cov ~

Thus the be.am-density
effect is important mainly when there are conduc-
tion electrons present, but, if the v; represent
bound-bound transitions of sufficiently low energy,
they could also be important for current densities
achievable in the laboratory. We have calculated
We for solid-density aluminum and found that
even for mega-ampere per square centimeter
current densities, Hz was negligible. This led us to
consider weakly ionized gases for which the small-

est value of ~n, cuv~, for the free electrons, can be
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FKJ. 1. The ratio of the beam-density contribution W&

to the single-particle energy loss W& vs the distance of a
beam particle from the beam front. The curves were
generated for a S-.MeV proton beam with beam density
nb = 6.44&& 10' cm ' interacting with partially ionized H2
containing n, free electrons per cubic centimeter.

f

orders of magnitude smaller than for metals.
Figure 1 illustrates the evaluation of W~, using

Eqs. (12) and (13), for a semi-infinite beam with a
Gaussian radial profile and a step-function head.
The ratio of the beam contribution to the single-
particle energy loss Ws is plotted versus the dis-
tance L2 of a beam particle from the beam front on
the beam's axis. Since L& ~ for a semi-infinite
beam, we have Wz = W~ (Lz, bp) + 5~(L2,bp),

936



VOLUME 52, NUMBER 11 PHYSICAL REVIEW LETTERS 12 MARCH 1984

Eqs. (12) and (13) with Lt L2. The curves were
calculated for a 5-MeV proton beam of 10 kA with
a Gaussian radial parameter bo 1——mm, i.e.,
nt=6. 44 x10t4 cm 3. The beam interacts with
weakly ionized H2 having a density of 2.67x10'9
cm 3, corresponding to ltco~=0.272 eV. '5'6 A
free-electron density of n, = 1.11x 10'6 cm
which occurs for H2 with kT=0.75 eV, was as-
sumed, yieldingit ~n, co~~ =3.92x10 ' eV.

The dash-dotted curve in Fig. 1 for n,
= 1.11x10'6 cm 3 exhibits an oscillatory behavior
from 0 to 0.01 cm from the beam front, while at
larger distances W~/ 8q is positive. The oscillations
come from the resonant contribution W~, Eq. (12),
which is dominant at small distances. When n, is
reduced by an order of magnitude (solid curve), the
positive, nonresonant term Wiv, Eq. (13) is dom-
inant. The qualitative behavior of these results is
not sensitive to beam energy. The figure shows
that for this case the stopping power of a particle
near the beam front is increased by nearly two or-
ders of magnitude. This large value of 8'z at the
beam head mirrors the behavior of the
phenomenon of return currents which are driven by
the electric fields induced by the rapidly varying
current at the head and tail of a finite pulse. '8'9
The dashed curve in the case of n, = I.llx10ts
cm 3 was obtained by using a numerical integration
of Eq. (11) along contours on the positive and neg-
ative imaginary axis to obtain 8'z. This indicates
that the error in using the analytic approximation
does not exceed —20%.

We have shown that the nonresonant terms play
a significant role in determining the long-range
behavior of the two-particle cooperative energy loss
in contrast to the single-particle energy loss for
which the resonances of the inverse of the dielectric
function are dominant in the nonrelativistic regime.
The dipolelike behavior of the vicinage function for
larger distances has not been noticed previously;
however, a dipole back-flow current around a
charged particle traveling in a conducting medium
has been discussed by Pines and Noizeres. '8 It can
be shown that the beam-density effect encompasses
wakes behind charged particles in solids, mul-
tiparticle vicinage effects on collisional energy
loss, a'o t4 and also the fields that drive the return
currents giving rise to Ohmic loss (for a review see
Ref. 19). These may all be considered as different
aspects of the inductive energy loss caused by the
interaction of a current with the electric field that it
induces in the medium.

The results of the present study should con-
tribute to the understanding of the energy deposi-

tion process of intense beams in applications such
as beam transport in gases, the interaction of beams
with ablation plasmas from fusion targets, and their
interaction with the transient conduction electrons
that they produce in ionic solids.

This work was supported by the Directed Energy
Program Office of the Naval Sea Systems Com-
mand and by the Naval Surface Weapons Center's
Independent Research Program. The Oak Ridge
National Laboratory is operated for the U.S.
Department of Energy by Union Carbide Corpora-
tion under Contract No. W-7405-eng-26. We are
grateful to Dr. R. H. Ritchie for many helpful dis-
cussions on wake effects and related phenomena.
We also wish to express our gratitude to Dr. George
Hudson for numerous beneficial conversations on
the subject of this research.

&Alan J. Toepfer, Adv. Electron. Electron Phys. 53, 1

(1980).
2K. Imasaki et ai. , Phys. Rev. Lett. 43, 1937 (1979),

and Appl. Phys. Lett. 37, 533 (1980).
3E. Nardi and Z. Zinamon, Phys. Rev. A 18, 1246

(1978).
4Thomas A. Mehlhorn, J. Appl. Phys. 52, 6522 (1981).
5F. C. Young et al. , Phys. Rev. Lett. 49, 549 (1982).
6R. A. McCorkle and G. J. Iafrate, Phys. Rev, Lett.

39, 1263 (1977).
7W. Brandt, A. Ratkowski, and R. H. Ritchie, Phys.

Rev. Lett. 33, 1325 (1974), and 35, 130(E) (1975);
Werner Brandt and R. H. Ritchie, Nucl. Instrum.
Methods 132, 43 (1976).

8N. R. Arista and V. H. Ponce, J. Phys. C 8, L188
(1975).

9P. M. Echenique, R. H. Ritchie, and Werner Brandt,
Phys. Rev. B 20, 2567 (1979).

~OJ. Steinbeck and K. Dettmann, J. Phys. C 11, 2907
(1978).

~~George Basbas and R. H. Ritchie, Phys. Rev. A 25,
1943 (1982).

2Donald S. Gemmell, Nucl. Instrum. Methods 194,
255 (1982).

&3D. W. Rule and M. H. Cha, Phys. Rev. A 24, 55
(1981).

t4D. W. Rule, in High Power Beams '81, Proceedings of
the Fourth 1nternational Topical Conference on High Power-
Electron- and Ion-Beam Research and Technology,
Palaiseau, France, edited by H. J. Doucet and J. M. Buzzi
(Ecole Polytechnique, Palaiseau, 1981).

tsR. M. Sternheimer, Phys. Rev. 88, 851 (1952), and
91, 256 (1953).

'6R. M. Sternheimer, Phys. Rev. 103, 511 (1956).
~7D. W. Rule and O. H. Crawford, to be published.
t8David Pines and Philippe Nozieres, The Theory of

Quantum Liquids (Benjamin, New York, 1966), Vol. 1.
t9G. Wallis et al. , Usp. Fiz. Nauk 113, 435 (1974) [Sov.

Phys. Usp. 17, 492 (1975)].

937


