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Pattern competition has been studied experimentally in the free surface modes of a circular
fluid layer that is forced vertically. Interaction between nearly degenerate modes of different
symmetry gives rise to periodic and chaotic fluctuations. The time-dependent mode ampli-
tudes have been measured with digital imaging methods. Many of the observed phenomena
can be explained by a low-dimensional coupled oscillator model that is related to the Navier-
Stokes equations.

PACS numbers: 47.20.+m, 03.40.6c, 47.35.+i

Some hydrodynamic systems, such as Rayleigh-
Benard convection in a layer whose lateral dimen-
sions are sufficiently small, or Couette-Taylor flow
in a system whose vertical height is not too great,
are known to have chaotic states that can be
described by few-dimensional strange attractors. '

Unfortunately, the physical origin of the chaotic
behavior in these systems is still unclear, and
predictive models are not generally available. In
this paper we report experiments in which chaotic
behavior clearly arises from a simple mechanism,
competition between two different spatial modes or
patterns. We suggest a phenomenological model
that is related to the wavier-Stokes equations and
explains many of the observations. We also
demonstrate that the time-dependent mode ampli-
tudes can be obtained by digital imaging methods,
even when several modes are present.

The system of interest is a cylindrical fluid layer
in a container that is subjected to a small vertical
oscillation. This system was first studied experi-
mentally by Faraday, 4 and the primary instability
was explained in an inviscid linearized approxima-
tion by Benjamin and Ursell. Although there have
been several recent experimental studies of the
dynamics of this system, the interaction between
different spatial patterns has not received quantita-
tive study. It is well known that if the driving am-
plitude exceeds a critical value A, (v) which is a
function of frequency, the free surface develops a
pattern of standing waves. The surface deformation
S(r, 0, t) can then be written as a superposition of
normal modes

S(„&t) = X, a, ~(r) Jl(k, ~r) cos(&&)

where JI are Bessel functions of order l and the al-
lowed wave numbers kI are determined by

the boundary condition that the derivative
JI'(k& R) = 0, where R is the radius of the cylinder.
The modes may be labeled by the indices i (giving
the number of angular maxima) and m (related to
the number of nodal circles). The mode amplitude
al (r) develops an instability when the correspond-
ing eigenfrequency (given by the dispersion law for
capillary-gravity waves) is approximately in reso-
nance with half the driving frequency v, and A
exceeds A, . This parametric instability leads to
standing waves in which the mode amplitude oscil-

1

lates at —,v.
In our experiments, the container (R = 6.35 cm)

is mounted on the cone of a loudspeaker oscillating
accurately in the vertical direction, and the fluid is
water of depth 1 cm. Surface wave patterns are stu-
died by refraction: An expanded parallel laser beam
traverses the cell vertically and impinges on a
translucent screen located 9 cm above the fluid sur-
face. The intensity field on the screen is converted
to an analog signal by a vidicon camera and then di-
gitized in —„s(with a resolution of 320 by 240
points, and 8-bit precision) with use of a fast
analog-to-digital converter and frame store residing
on a computer bus. We synchronize the digitization
with the forcing to insure a constant phase relative
to the fundamental oscillation at —,v (typically 7—10
Hz). This allows us to study the slowly varying parts
of the mode amplitudes, which we denote by al (r).
We omit the second subscript because in practice
only a single value of m is significant for a given
value of jt.

Examples of digitized optical intensity fields
formed by stable patterns involving only a single
mode (and possibly harmonics) are shown in Fig. 1

for the (7,2) and (4,3) modes. The index l is obvi-
ous from the symmetry, awhile m was determined by
matching the frequency to the known dispersion
law. (The accuracy of the calculated and observed
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FIG. 2. Portion of the phase diagram as a function of
driving amplitude A and frequency v. Stable patterns oc-
cur in the regions labeled by (l, m). Slow periodic and
chaotic oscillations occur in the cross-hatched regions.
The solid curves are the predictions of a phenomenologi-
cal mode-coupling model (see text). The crosses are ex-
perimental measurements of the phase boundaries.

FIG. 1, Digitized optical intensity patterns for the
(4,3) and (7,2) modes, respectively. The first index
gives the number of angular maxima.

frequencies is sufficient to eliminate any ambiguity
in m. ) The white areas correspond to surface
depressions (typically about 0.5 mm), and the black
ones to surface elevations. The driving amplitude
A was about 1.1A, and the frequency was at the
minimum of the stability curve in each case. We
have observed at least 30 distinct modes with t and
m between 1 and 7.

A small part of the phase diagram of the system
as a function of A and v is shown in Fig. 2. There
are three nearly degenerate modes separated by
only about 0.2 Hz. The parabolic curves show the
critical amplitude A, (v) for the labeled modes.
Below these curves, the surface is nearly flat (ex-
cept for a small response at the driving frequency).
Above but near the minimum of each curve, the
motion is dominated by a single mode, and the pat-
tern is stationary. Pattern competition takes place
in regions close to the intersections of two stability
curves. In these regions, we find that both of the
neighboring amplitudes are nonzero and that they
oscillate periodically or chaotically at a mean fre-
quency that is more than two orders of magnitude
smaller than v. We have made a detailed study of
the slow variations by digital imaging and spatial
Fourier analysis.

We proceed by first integrating the digitized light
intensity field over radial segments to reduce noise.
We then obtain the relative contributions of dif-
ferent values of l by calculating the magnitude
squared of the complex Fourier series for the
resulting angular intensity function I(0). The
height of this "angular power spectrum" P(l) at
given l is approximately proportional to the square
of the mode amplitude aIO(t). (The constants of
proportionality depend on radial integrals of the JI.)
Although it is possible to do a two-dimensional
normal-mode analysis in both the angular and radial
variables, this dramatically increases computational
time without providing additional insight.

An example of the angular intensity function
I(H) and corresponding angular spectrum P(l) for
the competition between l = 7 and l = 4 modes is
shown in Fig. 3. There are seven angular maxima,
and the dominant spectral peaks are at l=7 and
I = 14. However, there is also a small peak at I = 4
corresponding to the admixture of a small amount
of this mode into the surface displacement. In the
regime of pattern competition, we find that the
heights of the peaks are time dependent. By doing
angular Fourier analysis at many times and plotting
the square roots of the spectral heights P(7) and
P(4), we obtain (Fig. 4) the time dependence of
the mode amplitudes a7 and a4. The slow oscilla-
tion resulting from mode competition is periodic in
this case, and a70 leads a40 by about 90'. This phase
relationship is significant; it implies that (7,2)
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FIG. 5. Mean period of the regenerative oscillation as

a function of driving frequency for 2 =99 p, m. Solid

points are experimental, and crosses are obtained from

the model.

crosses the 0.1-Hz wide interaction region. The
solid points. are experimental data, while the crosses
are the results of the numerical model. We do not
show numerical results below 16.10 Hz because the
frequency spectrum is extremely broad in that re-
gion. The numerical results for the period and its
dependence on frequency are roughly correct and
could be improved further by tuning the model.

Summarizing, we have shown that the interaction
of two modes with different symmetries gives rise
to slow oscillations and chaos, and have described a
coupled oscillator model whose form is suggested in
part by the hydrodynamic equations. We believe
that pattern competition might well be a fairly com-
mon source of chaos.
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