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It is shown that, for a wide range of top-quark masses, the Higgs mass in the canonical
realization of the Salam-Weinberg theory must be ( 125 GeV. The considerations are
predicated on the premise that the pure X/4 theory is a free-field theory. The bound emerges
as a necessary condition, albeit within a specific scenario, to avoid the trap of a trivial Higgs
sector.

PACS numbers: 14.80.6t, 12.10.Ck

We reexamine the question of the consistency of
the canonical realization —with spontaneous sym-
metry breaking triggered by elementary scalars —of
the Salam-Weinberg theory, ' in the context of the
possible triviality of the A. Q4 theory. 2 3 Motivated
by recent work of Dashen and Neuberger, 4 we con-
sider a possibility suggested by some early work. of
Gross and Wilczek5: In the coupled Higgs-gauge-
field system, the difficulties associated with the
quartic coupling —usually deemed to find their
resolution via vanishing of the renormalized coup-
ling constant and thus a trivial theory —may be
matched and compensated by similar difficulties as-
sociated with asymptotically nonfree gauge-field
couplings. More precisely, we constrain the theory
in such a way that the ratio y = X(t)/gt(t)2 of run-
ning coupling constants does not diverge or become
unreasonably large ( » 1) for large t Here.
2t = 1n(p2/mt22 ), m~ being the W-boson mass and p
the momentum variable customarily used in
renormalization-group caluclations; the precise
meaning of "large t" will be given later; gt is the
coupling associated with the U(1) factor in the
gauge group of the standard model, U(1)
S SU(2) L, S SU(3) c. In what follows, g2 and

g3 denote the coupling constants associated with the
other two groups. (Possible effects of grand unifi-
cation, gravity, etc. , are not considered in this pa-
per. )

The requirement of a reasonable magnitude for y
appears to be a minimal condition for the consisten-
cy of the theory. If it is not met, there will be an
energy regime in which ) is much larger than all

gauge couplings and the purely scalar sector can be
decoupled from the rest of the system; the usual ar-
guments for the triviality of the X@4 theory will

then go through. 6

To implement the above requirement, we retain
only one-loop contributions to the P functions and

demand that y be driven to an ultraviolet-stable
fixed point; that this indeed leads to y & O(1) for
large t will be demonstrated below. In the mean-
time, we note that there is a measure of uniqueness
attached to y; the other available ratio, li./g2, can-
not go to a fixed point. ' Furthermore, if the theory
is to be in the domain of attraction of the fixed
point, the parameters of the theory cannot be arbi-
trary; in particular, the initial value of y —which
determines the mass of the Higgs boson —must lie
in a bounded interval. We distinguish three cases:

(a) If m, , the mass of the top quark (or any other
heavy quark), is less than a determinable value, say
m', then

0& y(t=0) ~ Y,„(m,) (m, ~ m').

(b) If m, exceeds m', there is also a nontrivial
lower bound for y;„;,which arises from the require-
ment that y remain positive definite for all t:

Y;„(m,) & y(t =0) & Y,„(m,)

(m, & m').

(c) If m, equals M, the maximal value allowed in
our formulation, the upper and lower bounds on
y (r = 0) coalesce into one; the Higgs mass is then
determined rather than bounded.

We are now in a position to state our numerical
results for mH, the Higgs-boson mass, obtained in
the manner explicated below.

Case (a): For m, & m'= 80 GeV, we find that
(mH/m~) & 2.376, corresponding to mH & 125
GeV. It is obvious that this is the most interesting
case, the bound being the lowest of the many upper
bounds on Higgs mass that have been published in
the literature. 7

Case (b): For m, & 80 GeV, the bounds vary
quite sharply with m, . Thus, 65 GeV & mH & 122
GeV for m, =120 GeV, while 140 GeV & mH
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( 148 GeV for m, = 150 GeV.
Case (c): For m, = 168 GeV, the largest possible value, mH ——175 GeV.
%e proceed to sketch a derivation of our results. To establish our notation and normalization, we display

explicitly the Lagrangian density corresponding to the Higgs sectors:

Wy= (rl„(t ——gt$ B„——g2$ & &„)(()"$+ gt—B"Q+—g27 A~(t )

t
'—4 4 —X(4'4)'+ GILA%((+. . . .

Here B and A are the U(1) and SU(2)t gauge
fields, respectively; the r are the Pauli matrices;
(l(,

2 ( 0, for spontaneous symmetry breaking; A. ( 0,
for stability; and the Higgs field is assigned hyper-
charge I'= +1. The (t 's are Fermi fields; we have
displayed only one of the many possible Fermi-
Higgs Yukawa couplings [P=—i~2((t )T]; the dots
indicate the others.

At the one-loop level, the renormalization-group
equations for the gauge couplings are

dg, /dt = e(b(g( /16mz,

where i ( = 1, 2, 3) labels the gauge group,
b, & 0, et = + 1, and e2= e3 = —1. Before we write
down the one-loop (8 functions for the other coup-
lings, we introduce variables

z= G /gt ', t( g3/gii

where G is now identified as the Yukawa coupling

u (x) = (b,/b3) Cb2x/[bt+ xb2(1 —C) ],

(bt/b2) C'exp( —$)
1 —C'exp(- ()

(sa)

(Sb)

where C and C' can be determined from our
knowledge of the coupling constants at t = 0, corre-
sponding to ( = 0 and x = 1/tan20„, O„being the
electroweak angle. (The domain of (, 0(((~,
corresponds to the interval tan 20„~x & 0.)
Note further that at the tree level,

y(t =0) = mH2/(8m(( tan 0„),
z(t =0) = m(2/(2m(( tan'0~). (6b)

The renormalization-group equations for the
quartic and Yukawa couplings9 can be put in the
form

associated with the top quark.
Note that x, $, and u are simply related by virtue

of Eq. (4). We have

dy 192y —8y (3+2bi+ 9x —12z) + 3 (1+2x+ 3x2) —48z2

16x(bt+ b2x)

dz/dx = —z [9z —2bt —16u(x) ]/2x(bt+ b2x).

(7a)

(7b)

[Some electroweak contributions, small in comparison with 2bt+ 16u (x), have been neglected in Eq. (7b).]
Both equations are of the Riccati type. '0 The second can be solved exactly; using ( as the independent

variable, we have

z(0) exp[X(()]
1+z(0) ( —9/2bi) I exp [X(()]d$

where X($) = —bt tel (bt+ 8u) dg.
To avoid the singularity —in other words, have a

solution that tends to the fixed point z = 0 as
oo—that would otherwise develop in z(f),

z(0) must be bounded from above; this leads to the
upper bound M(= 168 GeV) on the mass of the
top quark.

Equation (7a) can be solved analytically for small
x and z; this is adequate, however, only to show (in
a constructive way!) that there exists a nonsingular

solution which is driven to the fixed point

y'= [1+—'
, bt —I(1+ —,

' bt)' —4}' ']/16

as x 0. To proceed further, it is necessary to in-
tegrate Eqs. (7a) and (7b) numerically; this was
done with use of a computer program based on the
Runge-Kutta method, ' with the following values
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functions. For the U(1) coupling, gt, this leads to a
singularity of the type first discussed by Landau"
for QED. Crossing this singularity would take us
into a domain of the absurd in which probabilities
take on negative values. We do not, however, cross
this singularity; x 0, or $ ~, corresponds to
approaching this singularity, but takes us no fur-
ther; in other words, all momenta are cut off at a
value determined by the position of the ghost pole.
The value of this cutoff,

AG= m~exp[2n cos 8„(m~)/b&a(m~)]
=4x104' GeV,
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FIG. 1. Upper and lower bounds on the Higgs-boson
mass plotted as a function of the top-quark mass. [The
lower bound of Weinberg and Linde (mH & 7 GeV; see,
for example, Ref. 1) is not depicted. ]

of the input parameters:

bt =
9 ng + —, = 6.833 33;
20 1

22 4 1b2= —, —, ng —,—=3.—16666,

b3 = 11—, nz = 7, —4

x —= xp= 3.545 45

u;„;,=—up = 10.0987.

The numerical values correspond to n~ (number of
generations) = 3, sin28„=0.22, A~@=0.1 GeV,
and initialization at momentum mz ——81 GeV.
(AMs is the usual QCD parameter. ')

The computer-generated solution of Eqs. (7a)
and (7b) led to the bounds on mH quoted earlier,
and plotted as a function of m, , in Fig. 1.

Remarks. —(i) To verify that our reasonable-
magnitude requirement is indeed fulfilled, if the
theory is in the domain of attraction of the fixed
point, consider the solution of Eq. (7a) for m, = 31
GeV. With y(xp) =1.02, the computer-generated
solution satisfied 0.027 & y (x) & 1.02 for 5
X10 '& x & xp. (The lower bound on y may be
compared to 0.023, the value of y' for ng

= 3.) To
investigate what happens if one steps outside the
domain, we set y(xp) = 1.10 and found that

y —4X 108 for x —0.16!
(ii) A shortcoming of our discussion lies in our

retention of only one-loop contributions to the P

is so large that its finiteness need have no effect on
the physics we explore.

Nonetheless, there is a problem that calls for
careful examination; it is the breakdown of the loop
expansion for Pt in the neighborhood of the ghost
pole. To stay within the domain of validity of this
expansion, one must cut off all momenta at a value
A smaller than AG. Now we anticipate that pertur-
bation theory will be good if we adhere to t values
such that at(t) —= g&/4m & 0.1; this corresponds,
however, to A & 4&& 1037 GeV (x & 0.14), an enor-
mous energy indeed, Furthermore, as illustrated in
(i), the upper bound imposed on mH, by the
mathematical requirement that the solution y of the
one-loop equations tends to a fixed point as x 0,
differs only by a few percent from the maximum
value of mH allowed by the demand that y(t)
& 0 (1) for momenta & A. Thus the finiteness of

A need also be no cause for alarm!
(iii) A prime purpose of this Letter is to en-

courage our experimental colleagues to look for the
elusive Higgs particle at masses —10—150 GeV.
That this mass range may be of interest for other
reasons (it is the abode of pseudo-Goldstone bo-
sons in the hypercolor scenario) has been noted in
Ref. 1.

If a Higgs particie is not found, one may have to
adopt a viewpoint wherein the scalar particles of the
canonical theory are regarded as phenomenological
props. s New physics then has to emerge at energies
in the teraelectronvolt regime, if not earlier. ' The
challenge posed by unsolved theoretical problems in
dynamical symmetry-breaking scenarios would have
to be met.

(iv) The limitations of the renormalization-group
formalism, in determining low-energy parameters,
will be discussed elsewhere.
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