Mass of the Higgs Boson in the Canonical Realization of the Salam-Weinberg Theory

M. A. B. Bég, C. Panagiotakopoulos, and A. Sirlin^(a) The Rockefeller University, New York, New York 10021 (Received 9 December 1983)

It is shown that, for a wide range of top-quark masses, the Higgs mass in the canonical realization of the Salam-Weinberg theory must be ≤ 125 GeV. The considerations are predicated on the premise that the pure $\lambda \phi^4$ theory is a free-field theory. The bound emerges as a necessary condition, albeit within a specific scenario, to avoid the trap of a trivial Higgs sector.

PACS numbers: 14.80.Gt, 12.10.Ck

We reexamine the question of the consistency of the canonical realization-with spontaneous symmetry breaking triggered by elementary scalars— of the Salam-Weinberg theory,¹ in the context of the possible triviality of the $\lambda \phi^4$ theory.^{2,3} Motivated by recent work of Dashen and Neuberger,⁴ we consider a possibility suggested by some early work of Gross and Wilczek⁵: In the coupled Higgs-gaugefield system, the difficulties associated with the quartic coupling-usually deemed to find their resolution via vanishing of the renormalized coupling constant and thus a trivial theory-may be matched and compensated by similar difficulties associated with asymptotically nonfree gauge-field couplings. More precisely, we constrain the theory in such a way that the ratio $y = \overline{\lambda}(t)/\overline{g}_1(t)^2$ of running coupling constants does not diverge or become unreasonably large (>>1) for large t. Here $2t = \ln(p^2/m_W^2)$, m_W being the W-boson mass and p the momentum variable customarily used in renormalization-group caluclations⁵; the precise meaning of "large t" will be given later; g_1 is the coupling associated with the U(1) factor in the gauge group of the standard model, U(1) \otimes SU(2)_L \otimes SU(3)_C. In what follows, g_2 and g_3 denote the coupling constants associated with the other two groups. (Possible effects of grand unification, gravity, etc., are not considered in this paper.)

The requirement of a reasonable magnitude for y appears to be a minimal condition for the consistency of the theory. If it is not met, there will be an energy regime in which $\overline{\lambda}$ is much larger than all gauge couplings and the purely scalar sector can be decoupled from the rest of the system; the usual arguments for the triviality of the $\lambda \phi^4$ theory will then go through.⁶

To implement the above requirement, we retain only one-loop contributions to the β functions and demand that y be driven to an ultraviolet-stable fixed point; that this indeed leads to $y \leq O(1)$ for large t will be demonstrated below. In the meantime, we note that there is a measure of uniqueness attached to y; the other available ratio, $\overline{\lambda}/\overline{g}_2^2$, cannot go to a fixed point.⁵ Furthermore, if the theory is to be in the domain of attraction of the fixed point, the parameters of the theory cannot be arbitrary; in particular, the initial value of y— which determines the mass of the Higgs boson—must lie in a bounded interval. We distinguish three cases:

(a) If m_t , the mass of the top quark (or any other heavy quark), is less than a determinable value, say m^* , then

$$0 < y(t=0) \leq Y_{\max}(m_t) \quad (m_t \leq m^*).$$
 (1)

(b) If m_t exceeds m^* , there is also a nontrivial lower bound for y_{init} which arises from the requirement that y remain positive definite for all t:

$$Y_{\min}(m_t) \leq y(t=0) \leq Y_{\max}(m_t)$$
$$(m_t > m^*).$$
(2)

(c) If m_t equals M, the maximal value allowed in our formulation, the upper and lower bounds on y(t=0) coalesce into one; the Higgs mass is then determined rather than bounded.

We are now in a position to state our numerical results for m_H , the Higgs-boson mass, obtained in the manner explicated below.

Case (a): For $m_t < m^* \approx 80$ GeV, we find that $(m_H/m_W)^2 \le 2.376$, corresponding to $m_H \le 125$ GeV. It is obvious that this is the most interesting case, the bound being the lowest of the many upper bounds on Higgs mass that have been published in the literature.⁷

Case (b): For $m_t > 80$ GeV, the bounds vary quite sharply with m_t . Thus, 65 GeV $< m_H < 122$ GeV for $m_t = 120$ GeV, while 140 GeV $< m_H$ < 148 GeV for $m_t = 150$ GeV.

Case (c): For $m_t = 168$ GeV, the largest possible value, $m_H \simeq 175$ GeV.

We proceed to sketch a derivation of our results. To establish our notation and normalization, we display explicitly the Lagrangian density corresponding to the Higgs sector⁸:

$$\mathscr{L}_{\phi} = \left(\partial_{\mu}\phi^{\dagger} - \frac{i}{2}g_{1}\phi^{\dagger}B_{\mu} - \frac{i}{2}g_{2}\phi^{\dagger}\vec{\tau}\cdot A_{\mu}\right)\left(\partial^{\mu}\phi + \frac{i}{2}g_{1}B^{\mu}\phi + \frac{i}{2}g_{2}\vec{\tau}\cdot\vec{A}^{\mu}\phi\right) -\mu^{2}\phi^{\dagger}\phi - \lambda\left(\phi^{\dagger}\phi\right)^{2} + G\bar{\psi}_{L}\tilde{\phi}\psi_{R} + \dots$$
(3)

Here *B* and *A* are the U(1) and SU(2)_L gauge fields, respectively; the τ are the Pauli matrices; $\mu^2 < 0$, for spontaneous symmetry breaking; $\lambda < 0$, for stability; and the Higgs field is assigned hypercharge Y = +1. The ϕ 's are Fermi fields; we have displayed only one of the many possible Fermi-Higgs Yukawa couplings $[\tilde{\phi} \equiv i\tau_2(\phi^{\dagger})^T]$; the dots indicate the others.

At the one-loop level, the renormalization-group equations for the gauge couplings are

$$d\overline{g}_i/dt = \epsilon_i b_i \overline{g}_i^3/16\pi^2, \tag{4}$$

where i (=1,2,3) labels the gauge group, $b_i > 0$, $\epsilon_1 = +1$, and $\epsilon_2 = \epsilon_3 = -1$. Before we write down the one-loop β functions for the other couplings, we introduce variables

$$x = \overline{g}_2^2 / \overline{g}_1^2; \quad \zeta = \ln[\overline{g}_1^2 / \overline{g}_1^2 (t=0)];$$

$$z = \overline{G}^2 / \overline{g}_1^2; \quad u = \overline{g}_3^2 / \overline{g}_1^2,$$

where G is now identified as the Yukawa coupling

associated with the top quark.

Note that x, ζ , and u are simply related by virtue of Eq. (4). We have

$$u(x) = (b_1/b_3) C b_2 x / [b_1 + x b_2(1 - C)], \quad (5a)$$

$$x = \frac{(b_1/b_2)C'\exp(-\zeta)}{1 - C'\exp(-\zeta)},$$
 (5b)

where C and C' can be determined from our knowledge of the coupling constants at t=0, corresponding to $\zeta = 0$ and $x = 1/\tan^2 \theta_w$, θ_w being the electroweak angle. (The domain of ζ , $0 \le \zeta < \infty$, corresponds to the interval $\tan^{-2} \theta_w \ge x > 0$.) Note further that at the tree level,

$$y(t=0) = m_H^2 / (8m_W^2 \tan^2 \theta_w),$$
 (6a)

$$z(t=0) = m_t^2 / (2m_W^2 \tan^2 \theta_W).$$
 (6b)

The renormalization-group equations for the quartic and Yukawa couplings⁹ can be put in the form

$$\frac{dy}{dx} = -\frac{192y^2 - 8y(3 + 2b_1 + 9x - 12z) + 3(1 + 2x + 3x^2) - 48z^2}{16x(b_1 + b_2x)},$$
(7a)

$$dz/dx = -z[9z - 2b_1 - 16u(x)]/2x(b_1 + b_2x).$$
(7b)

[Some electroweak contributions, small in comparison with $2b_1 + 16u(x)$, have been neglected in Eq. (7b).] Both equations are of the Riccati type.¹⁰ The second can be solved exactly; using ζ as the independent

Both equations are of the Riccati type.¹⁰ The second can be solved exactly; using ζ as the independent variable, we have

$$z(\zeta) = \frac{z(0) \exp[\chi(\zeta)]}{1 + z(0)(-9/2b_1) \int_0^{\zeta} \exp[\chi(\zeta)] d\zeta},$$
(8)

where $\chi(\zeta) = -b_1^{-1} \int_0^{\delta} (b_1 + 8u) d\zeta$. To avoid the singularity—in other words, have a

To avoid the singularity—in other words, have a solution that tends to the fixed point z=0 as $\zeta \rightarrow \infty$ —that would otherwise develop in $z(\zeta)$, z(0) must be bounded from above; this leads to the upper bound $M(\simeq 168 \text{ GeV})$ on the mass of the top quark.

Equation (7a) can be solved analytically for small x and z; this is adequate, however, only to show (in a constructive way!) that there exists a nonsingular

solution which is driven to the fixed point

$$y^* = \left[1 + \frac{2}{3}b_1 - \left\{\left(1 + \frac{2}{3}b_1\right)^2 - 4\right\}^{1/2}\right]/16$$

as $x \rightarrow 0$. To proceed further, it is necessary to integrate Eqs. (7a) and (7b) numerically; this was done with use of a computer program based on the Runge-Kutta method,¹⁰ with the following values

FIG. 1. Upper and lower bounds on the Higgs-boson mass plotted as a function of the top-quark mass. [The lower bound of Weinberg and Linde ($m_H \ge 7$ GeV; see, for example, Ref. 1) is not depicted.]

of the input parameters:

$$b_1 = \frac{20}{9} n_g + \frac{1}{6} = 6.833 \ 33;$$

$$b_2 = \frac{22}{3} - \frac{4}{3} n_g - \frac{1}{6} = 3.166 \ 66,$$

$$b_3 = 11 - \frac{4}{3} n_g = 7,$$

$$x_{\text{init}} \equiv x_0 = 3.545 \ 45,$$

$$u_{\text{init}} \equiv u_0 = 10.0987.$$

The numerical values correspond to n_g (number of generations) = 3, $\sin^2\theta_w = 0.22$, $\Lambda_{\overline{MS}} = 0.1$ GeV, and initialization at momentum $m_W \simeq 81$ GeV. $(\Lambda_{\overline{MS}}$ is the usual QCD parameter.¹)

The computer-generated solution of Eqs. (7a) and (7b) led to the bounds on m_H quoted earlier, and plotted as a function of m_t , in Fig. 1.

Remarks.—(i) To verify that our reasonablemagnitude requirement is indeed fulfilled, if the theory is in the domain of attraction of the fixed point, consider the solution of Eq. (7a) for $m_t = 31$ GeV. With $y(x_0) = 1.02$, the computer-generated solution satisfied 0.027 < y(x) < 1.02 for $5 \times 10^{-5} < x < x_0$. (The lower bound on y may be compared to 0.023, the value of y^* for $n_g = 3$.) To investigate what happens if one steps outside the domain, we set $y(x_0) = 1.10$ and found that $y \sim 4 \times 10^8$ for $x \sim 0.16$!

(ii) A shortcoming of our discussion lies in our retention of only one-loop contributions to the β

functions. For the U(1) coupling, g_1 , this leads to a singularity of the type first discussed by Landau¹¹ for QED. Crossing this singularity would take us into a domain of the absurd in which probabilities take on negative values. We do not, however, cross this singularity; $x \rightarrow 0$, or $\zeta \rightarrow \infty$, corresponds to approaching this singularity, but takes us no further; in other words, all momenta are cut off at a value determined by the position of the ghost pole. The value of this cutoff,

$$\Lambda_G = m_W \exp[2\pi \cos^2 \bar{\theta}_w(m_W) / b_1 \bar{\alpha}(m_W)]$$

\$\approx 4 \times 10^{41} GeV,

is so large that its finiteness need have no effect on the physics we explore.

Nonetheless, there is a problem that calls for careful examination; it is the breakdown of the loop expansion for β_1 in the neighborhood of the ghost pole. To stay within the domain of validity of this expansion, one must cut off all momenta at a value Λ smaller than Λ_G . Now we anticipate that perturbation theory will be good if we adhere to t values such that $\overline{\alpha}_1(t) \equiv \overline{g}_1^2/4\pi \leq 0.1$; this corresponds, however, to $\Lambda \leq 4 \times 10^{37}$ GeV ($x \geq 0.14$), an enormous energy indeed. Furthermore, as illustrated in (i), the upper bound imposed on m_H , by the mathematical requirement that the solution y of the one-loop equations tends to a fixed point as $x \rightarrow 0$, differs only by a few percent from the maximum value of m_H allowed by the demand that y(t) $\leq O(1)$ for momenta $\leq \Lambda$. Thus the finiteness of Λ need also be no cause for alarm!

(iii) A prime purpose of this Letter is to encourage our experimental colleagues to look for the elusive Higgs particle at masses $\sim 10-150$ GeV. That this mass range may be of interest for other reasons (it is the abode of pseudo-Goldstone bosons in the hypercolor scenario) has been noted in Ref. 1.

If a Higgs particle is not found, one may have to adopt a viewpoint wherein the scalar particles of the canonical theory are regarded as phenomenological props.⁸ New physics then has to emerge at energies in the teraelectronvolt regime, if not earlier.¹ The challenge posed by unsolved theoretical problems in dynamical symmetry-breaking scenarios would have to be met.

(iv) The limitations of the renormalization-group formalism, in determining low-energy parameters, will be discussed elsewhere.

This work was supported in part by the U. S. Department of Energy under Contract Grant No. DE-AC02-81ER40033B.000 and by the National

Science Foundation through Grant No. PHY 8116102. One of us (A.S.) acknowledges receipt of a fellowship from the J. S. Guggenheim Foundation.

^(a)Permanent address: Physics Department, New York University, 4 Washington Place, New York, N. Y. 10003.

¹For a recent review, see M. A. B. Bég and A. Sirlin, Phys. Rep. <u>88</u>, 1 (1982).

²K. G. Wilson, Phys. Rev. B 4, 3184 (1971); K. G. Wilson and J. Kogut, Phys. Rep. 12C, 78 (1974).

³B. Freedman, P. Smolensky, and D. Weingarten, Phys. Lett. 113B, 209 (1982).

⁴R. Dashen and H. Neuberger, Phys. Rev. Lett. <u>50</u>, 1897 (1983).

⁵D. J. Gross and F. Wilczek, Phys. Rev. D <u>8</u>, 3633 (1973): See also D. J. E. Callaway, CERN Report No. TH.3660, 1983 (to be published). The point of view underlying Callaway's interesting paper is similar to ours; however, the implementation and the results differ.

⁶One may, however, regard the Salam-Weinberg theory as an effective field theory, with momenta cut off

at values much smaller than the parameter Λ introduced later in this paper. Such a scenario would not meet our definition of "canonical realization." See Ref. 1; cf. Ref. 4.

⁷Almost all bounds, including the ones quoted in the present paper, are based on some formulation of the principle that weak interactions lend themselves to a perturbative treatment. See B. W. Lee, C. Quigg, and H. B. Thacker, Phys. Rev. D <u>16</u>, 1519 (1977); N. Cabibbo, L. Maiani, G. Parisi, and R. Petronzio, Nucl. Phys. <u>B158</u>, 295 (1979).

⁸M. A. B. Bég and A. Sirlin, Annu. Rev. Nucl. Sci. <u>24</u>, 379 (1974).

⁹The relevant β functions may be gleaned from the papers of Gross and Wilczek (Ref. 5) and T. P. Cheng *et al.*, Phys. Rev. D 9, 2259 (1974).

¹⁰See, for example, E. L. Ince, *Ordinary Differential Equations* (Dover, New York, 1956).

¹¹L. D. Landau, in *Niels Bohr and the Development of Physics* (McGraw Hill, New York, 1955). See also N. N. Bogoliubov and D. V. Shirkov, *Introduction to the Theory of Quantized Fields* (Interscience, New York, 1959), Sec. 43.2.